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I. Introduction

Multiple regression analysis is a statistical tool for understanding the relationship
between two or more variables .1 Multiple regression involves a variable to be
explained—called the dependent variable—and additional explanatory variables
that are thought to produce or be associated with changes in the dependent vari-
able.2 For example, a multiple regression analysis might estimate the effect of
the number of years of work on salary. Salary would be the dependent variable to
be explained; years of experience would be the explanatory variable.

Multiple regression analysis is sometimes well suited to the analysis of data
about competing theories in which there are several possible explanations for the
relationship among a number of explanatory variables.3 Multiple regression typ-
ically uses a single dependent variable and several explanatory variables to assess
the statistical data pertinent to these theories.

In a case alleging sex discrimination in salaries, for example, a multiple re-
gression analysis would examine not only sex, but also other explanatory vari-
ables of interest, such as education and experience.4 The employer–defendant
might use multiple regression to argue that salary is a function of the employee’s

1. A variable is anything that can take on two or more values (e.g., the daily temperature in Chicago).
2. Explanatory variables in the context of a statistical study are also called independent variables. See  David

H. Kaye & David A. Freedman, Reference Guide on Statistics § II.C.1, in this manual. Kaye and Freedman
also offer a brief discussion of regression analysis. Id . § III.F.3.

3. Multiple regression is one type of statistical analysis involving several variables. Other types include
matching analysis, stratification, analysis of variance, probit analysis, logit analysis, discriminant analysis, and
factor analysis.

4. Thus, in Ottaviani v. State Univ. of N.Y., 875 F.2d 365, 367 (2d Cir. 1989), cert. denied, 493 U.S. 1021
(1990), the court stated:

In disparate treatment cases involving claims of gender discrimination, plaintiffs typically
use multiple regression analysis to isolate the influence of gender on employment deci -
sions relating to a particular job or job benefit, such as salary. The first step in such a re -
gression analysis is to specify all of the possible “legitimate” (i.e., nondiscriminatory) fac -
tors that are likely to significantly affect the dependent variable and which could account
for disparities in the treatment of male and female employees. By identifying those legit -
imate criteria that affect the decision making process, individual plaintiffs can make pre -
dictions about what job or job benefits similarly situated employees should ideally re -
ceive, and then can measure the difference between the predicted treatment and the ac -
tual treatment of those employees. If there is a disparity between the predicted and ac -
tual outcomes for female employees, plaintiffs in a disparate treatment case can argue
that the net “residual” difference represents the unlawful effect of discriminatory animus
on the allocation of jobs or job benefits. (citations omitted)
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education and experience, and the employee–plaintiff might argue that salary is
also a function of the individual’s sex.

Multiple regression also may be useful (1) in determining whether or not a
particular effect is present; (2) in measuring the magnitude of a particular effect;
and (3) in forecasting what a particular effect would be, but for an intervening
event. In a patent infringement case, for example, a multiple regression analysis
could be used to determine (1) whether the behavior of the alleged infringer af-
fected the price of the patented product; (2) the size of the effect; and (3) what
the price of the product would have been had the alleged infringement not oc-
curred.

Over the past several decades the use of regression analysis in court has grown
widely.5 Although multiple regression analysis has been used most frequently in
cases of sex and race discrimination6 and antitrust violation,7 other applications
have ranged across a variety of cases, including those involving census under-
counts,8 voting rights,9 the study of the deterrent effect of the death penalty,10

and intellectual property. 11

5. There were only 2 WESTLAW references to multiple regression in federal cases between 1960 and
1969, 26 references between 1970 and 1979, 204 references between 1980 and 1989, and 73 references since
1990.

6. Recent discrimination cases using multiple regression analysis include King v. General Elec. Co., 960
F.2d 617 (7th Cir. 1992), and Tennes v. Massachusetts Dep’t of Revenue, No. 88-C3304, 1989 WL 157477
(N.D. Ill. Dec. 20, 1989) (age discrimination); EEOC v. General Tel. Co. of N.W., 885 F.2d 575 (9th Cir.
1989), cert. denied, 498 U.S. 950 (1990), Churchill v. International Business Machs., Inc., 759 F. Supp. 1089
(D.N.J. 1991), and Denny v. Westfield State College, 880 F.2d 1465 (1st Cir. 1989) (sex discrimination); Black
Law Enforcement Officers Ass’n v. City of Akron, 920 F.2d 932 (6th Cir. 1990), Bazemore v. Friday, 848 F.2d
476 (4th Cir. 1988), Bridgeport Guardians, Inc. v. City of Bridgeport, 735 F. Supp. 1126 (D. Conn. 1990),
aff’d , 933 F.2d 1140 (2d Cir.), cert. denied, 112 S. Ct. 337 (1991), and Dicker v. Allstate Life Ins. Co., No. 89-
C4982, 1193 WL 62385 (N.D. Ill. Mar. 5, 1993) (race discrimination).

7. Recent antitrust cases using multiple regression analysis include In re Chicken Antitrust Litig., 560 F.
Supp. 963, 993 (N.D. Ga. 1980); and United States v. Brown Univ., 805 F. Supp. 288 (E.D. Pa. 1992), rev’d , 5
F.3d 658 (3d Cir. 1993) (price fixing of college scholarships).

8. See, e.g., Carey v. Klutznick, 508 F. Supp. 420, 432–33 (S.D.N.Y. 1980) (use of reasonable and scientif -
ically valid statistical survey or sampling procedures to adjust census figures for the differential undercount is
constitutionally permissible), stay granted,  449 U.S. 1068 (1980), rev’d on other grounds , 653 F.2d 732 (2d Cir.
1981), cert. denied, 455 U.S. 999 (1982); Young v. Klutznick, 497 F. Supp. 1318, 1331 (E.D. Mich. 1980),
rev’d on other grounds, 652 F.2d 617 (6th Cir. 1981), cert. denied, 455 U.S. 939 (1982); Cuomo v. Baldrige,
674 F. Supp. 1089 (S.D.N.Y. 1987).

9. Multiple regression analysis was used in suits charging that at-large area-wide voting was instituted to
neutralize black voting strength. Multiple regression demonstrated that the race of the candidates and that of
the electorate was a determinant of voting. See  Kirksey v. City of Jackson, 461 F. Supp. 1282, 1289 (S.D. Miss.
1978), aff’d , 663 F.2d 659 (5th Cir. 1981); Brown v. Moore, 428 F. Supp. 1123, 1128–29 (S.D. Ala. 1976),
aff’d without  op. , 575 F.2d 298 (5th Cir. 1978), vacated sub nom . Williams v. Brown, 446 U.S. 236 (1980);
Bolden v. City of Mobile, 423 F. Supp. 384, 388 (S.D. Ala. 1976), aff’d , 571 F.2d 238 (5th Cir. 1978), stay de -
nied , 436 U.S. 902 (1978), and rev’d , 446 U.S. 55 (1980); Jeffers v. Clinton, 730 F. Supp. 196, 208–09 (E.D.
Ark. 1989), aff’d , 498 U.S. 1019 (1991); and League of United Latin Am. Citizens, Council No. 4434 v.
Clements, 986 F.2d 728, 774–87 (5th Cir.), reh’g en banc , 999 F.2d 831 (5th Cir. 1993), cert. denied,  114 S.
Ct. 878 (1994). For a recent update on statistical issues involving voting rights cases, see Daniel L. Rubinfeld,
Statistical and Demographic Issues Underlying Voting Rights Cases, 15 Evaluation Rev. 659 (1991), and the as -
sociated articles within Vol. 15 (a special symposium issue devoted to statistical and demographic issues under -
lying voting rights cases).

10. See, e.g ., Gregg v. Georgia, 428 U.S. 153, 184–86 (1976). For a critique of the validity of the deter rence
analysis, see National Research Council, Deterrence and Incapacitation: Estimating the Effects of Criminal
Sanctions on Crime Rates (Alfred Blumstein et al. eds., 1978). Multiple regression methods have been used to
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Multiple regression analysis can be a source of valuable scientific testimony
in litigation. However, when inappropriately used, regression analysis can con-
fuse important issues while having little, if any, probative value. In EEOC v.
Sears, Roebuck & Co ., in which Sears was charged with discrimination against
women in hiring practices, the Seventh Circuit acknowledged that “[m]ultiple
regression analyses, designed to determine the effect of several independent
variables on a dependent variable, which in this case is hiring, are an accepted
and common method of proving disparate treatment claims.”12 However, the
court affirmed the district court’s findings that the “E.E.O.C’s regression analy-
ses did not ‘accurately reflect Sears’ complex, nondiscriminatory decision-mak-
ing processes’” and that “‘E.E.O.C.’s statistical analyses [were] so flawed that
they lack[ed] any persuasive value.’”13 Serious questions also have been raised
about the use of multiple regression analysis in census undercount cases and in
death penalty cases.14

Moreover, in interpreting the results of a multiple regression analysis, it is im-
portant to distinguish between correlation  and causality . Two variables are corre-
lated when the events associated with the variables occur more frequently to-
gether than one would expect by chance. For example, if higher salaries are as-
sociated with a greater number of years of work experience, and lower salaries
are associated with fewer years of experience, there is a positive correlation be-
tween the two variables. However, if higher salaries are associated with less expe-
rience, and lower salaries are associated with more experience, there is a nega-
tive correlation between the two variables.

A correlation between two variables does not imply that one event causes the
second to occur. Therefore, in making causal inferences, it is important to avoid
spurious correlation .15 Spurious correlation arises when two variables are closely
related but bear no causal relationship because they are both caused by a third,
unexamined variable.

For example, there might be a negative correlation between the age of certain
skilled employees of a computer company and their salaries. One should not

evaluate whether the death penalty was applied discriminately on the basis of race. See  McClesky v. Kemp,
481 U.S. 279, 292–94 (1987).

11. See  Polaroid Corp. v. Eastman Kodak Co., No. 76-1634-MA, 1990 WL 324105, at *29, 62–63 (D.
Mass. Oct. 12, 1990) (damages due to patent infringement), amended by No. 76-1634-MA, 1991 WL 4087 (D.
Mass. Jan. 11, 1991); and Estate of Vane v. The Fair, Inc., 849 F.2d 186, 188 (5th Cir. 1988), cert. denied, 488
U.S. 1008 (1989) (lost profits due to copyright infringement).

12. 839 F.2d 302, 324 n.22 (7th Cir. 1988).
13. Id. at 348, 351 (quoting EEOC v. Sears, Roebuck & Co., 628 F. Supp. 1264, 1342, 1352 (N.D. Ill.

1986)). The district court comments specifically on the “severe limits of regression analysis in evaluating com-
plex decision-making processes.” 628 F. Supp. at 1350.

14. With respect to the census, see Stephen E. Fienberg, The New York City Census Adjustment Trial:
Witness for the Plaintiffs,  34 Jurimetrics J. 65 (1993); John E. Rolph, The Census Adjustment Trial: Reflections
of a Witness for the Plaintiffs, 34 Jurimetrics J. 85 (1993); David A. Freedman, Adjusting the Census of 1990, 34
Jurimetrics J. 107 (1993). Concerning the death penalty, see Richard Lempert, Capital Punishment in the
‘80’s: Reflections on the Symposium,  74 J. Crim. L. & Criminology 1101 (1983).

15. See  Linda A. Bailey et al., Reference Guide on Epidemiology § IV.A (Confounding Variables), and
David H. Kaye & David A. Freedman, Reference Guide on Statistics §§ II.C.2, III.F.2.c, in this manual.
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conclude from this correlation that the employer has necessarily discriminated
against the employees on the basis of their age. A third, unexamined variable—
the level of the employees’ technological skills—could explain differences in
productivity and, consequently, differences in salary. Or, consider a patent in-
fringement damage case in which increased sales of an allegedly infringing
product are associated with a lower price of the patented product. This correla-
tion would be spurious if the two products have their own noncompetitive mar-
ket niches and the lower price is due to a decline in the production costs of the
patented product.

Causality cannot be inferred by data analysis alone—rather, one must infer
that a causal relationship exists on the basis of an underlying causal theory that
explains the relationship between the two variables. Even when an appropriate
theory has been identified, causality can never be inferred directly—one must
also look for empirical evidence that there is a causal relationship. Conversely,
the presence of a non-zero correlation between two variables does not guarantee
the existence of a relationship; it could be that the model  does not reflect the
correct interplay among the explanatory variables. In fact, the absence of correla-
tion does not guarantee that a causal relationship does not exist. Rather, lack of
correlation could occur if (1) there are insufficient data; (2) the data are mea-
sured inaccurately; (3) the data do not allow multiple causal relationships to be
sorted out; or (4) the model is specified wrongly.

There is a tension between any attempt to reach conclusions with near cer-
tainty and the inherently probabilistic nature of multiple regression analysis. In
general, statistical analysis involves the formal expression of uncertainty in terms
of probabilities. The reality that statistical analysis generates probabilities that
there are relationships should not be seen in itself as an argument against the use
of statistical evidence. The only alternative might be to use less reliable anecdo-
tal evidence.

This reference guide addresses a number of procedural and methodological
issues that are relevant in considering the admissibility of, and weight to be ac-
corded to, the findings of multiple regression analyses. It also suggests some
standards of reporting and analysis that an expert presenting multiple regression
analyses might be expected to meet. Section II discusses research design—how
the multiple regression framework can be used to sort out alternative theories
about a case. Section III concentrates on the interpretation of the multiple re-
gression results, from both a statistical and a practical point of view. Section IV
briefly discusses the qualifications of experts. In section V the emphasis turns to
procedural aspects associated with the use of the data underlying regression
analyses. Finally, the Appendix delves into the multiple regression framework in
further detail; it also contains a number of specific examples that illustrate the
application of the technique. A list of statistical references and a glossary are also
included.
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II. Research Design: Model Specification

Multiple regression allows the expert to choose among alternative theories or
hypotheses and assists the expert in sorting out correlations between variables
that are plainly spurious from those that reflect valid relationships.

A. What Is the Specific Question That Is Under Investigation by the
Expert?

Research begins with a clear formulation of a research question. The data to be
collected and analyzed must relate directly to the immediate issue; otherwise,
appropriate inferences cannot be drawn from the statistical analysis. For exam-
ple, if the question at issue in a patent damage case is what price the plaintiff’s
product would have been but for the sale of the defendant’s infringing product,
sufficient data must be available to allow the expert to account statistically for
the important factors that determine the price of the product.

B. What Model Should Be Used to Evaluate the Question at Issue?
Model specification involves several steps, each of which is fundamental to the
success of the research effort. Ideally, a multiple regression analysis builds on a
theory that describes the variables to be included in the study. For example, the
theory of labor markets might lead one to expect salaries in an industry to be re-
lated to workers’ experience and the productivity of workers’ jobs. A belief in dis-
crimination would lead one to add a variable or variables reflecting discrimina-
tion to the model.

Models are often characterized in terms of parameters —numerical character-
istics of the model. In the labor market example, one parameter might reflect
the increase in salary associated with each additional year of job experience.
Multiple regression uses a sample , or a selection of data, from the population , or
all the units of interest, to obtain estimates  of the values of the parameters of the
model—an estimate associated with a particular explanatory variable is a regres -
sion coefficient .

Failure to develop the proper theory, failure to choose the appropriate vari-
ables, and failure to choose the correct form of the model can bias substantially
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the statistical results, that is, create a systematic tendency for an estimate of a
model parameter to be too high or too low.

1. Choosing the dependent variable

The variable to be explained should be the appropriate variable for analyzing the
question at issue.16 Suppose, for example, that pay discrimination among hourly
workers is a concern. One choice for the dependent variable is the hourly wage
rate of the employees; another choice is the annual salary. The distinction is
important, because annual salary differences may be due in part to differences in
hours worked. If the number of hours worked is the product of worker prefer-
ences and not discrimination, the hourly wage is a good choice. If the number
of hours is related to the alleged discrimination, annual salary is the more ap-
propriate dependent variable to choose.17

2. Choosing the explanatory variable that is relevant to the issues in the case

The explanatory variable that allows the evaluation of alternative hypotheses
must be chosen appropriately. Thus, in a discrimination case, the variable of in -
terest  may be the race or sex of the individual. In an antitrust case, it may be a
variable that takes on the value 1 to reflect the presence of the alleged anticom-
petitive behavior and a value 0 otherwise.18

3. Choosing the additional explanatory variables

An attempt should be made to identify the additional known or hypothesized
explanatory variables, some of which are measurable and may support alternative
substantive hypotheses that can be accounted for by the regression analysis.
Thus, in a discrimination case, a measure of the skill level of the work may pro-
vide an alternative explanation—lower salaries were the result of inadequate
skills.19

16. In multiple regression analysis, the dependent variable is usually a continuous variable that takes on a
range of numerical values. When the dependent variable is categorical, taking only two or three values, modi -
fied forms of multiple regression, such as probit or logit analysis, are appropriate. For an example of the use of
the latter, see EEOC v. Sears, Roebuck & Co., 839 F.2d 302, 325 (7th Cir. 1988) (EEOC used weighted logit
analysis to measure the impact of variables, such as age, education, job type experience, and product line expe -
rience, on the female percentage of commission hires). See also  David H. Kaye & David A. Freedman,
Reference Guide on Statistics § II.C.1, in this manual.

17. In job systems in which annual salaries are tied to grade or step levels, the annual salary corresponding
to the job position could be more appropriate.

18. Explanatory variables may vary by type, which will affect the interpretation of the regression results.
Thus, some variables may be continuous, taking on a wide range of values, while others may be categorical,
taking on only two or three values.

19. In Ottaviani v. State Univ. of N.Y., 679 F. Supp. 288, 306–08 (S.D.N.Y. 1988), aff’d , 875 F.2d 365 (2d
Cir. 1989), cert. denied , 493 U.S. 1021 (1990), the court ruled (in the liability phase of the trial) that the uni -
versity showed there was no discrimination in either placement into initial rank or promotions between ranks,
so rank was a proper variable in multiple regression analysis to determine whether women faculty members
were treated differently from men.

However, in Trout v. Garrett, 780 F. Supp. 1396, 1414 (D.D.C. 1991), the court ruled (in the damage
phase of the trial) that the extent of civilian employees’ prehire work experience was not an appropriate variable
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Not all possible variables that may influence the dependent variable can be
included if the analysis is to be successful—some cannot be measured, and oth-
ers may make little difference. 20 If a preliminary analysis shows the unexplained
portion of the multiple regression to be unacceptably high, the expert may seek
to discover whether some previously undetected variable is missing from the
analysis.21

Failure to include a major explanatory variable that is correlated with the
variable of interest in a regression model may cause an included variable to be
credited with an effect that actually is caused by the excluded variable.22 In
general, omitted variables that are correlated with the dependent variable reduce
the probative value of the regression analysis. 23 This may lead to inferences
made from regression analyses that do not assist the trier of fact. 24

Omitting variables that are not correlated with the variable of interest is, in
general, less of a concern, since the parameter that measures the effect of the
variable of interest on the dependent variable is estimated without bias. Suppose,
for example, that the effect of a policy introduced by the courts to encourage
child support has been tested by randomly choosing some cases to be handled
according to current court policies and other cases to be handled according to a
new, more stringent policy. The effect of the new policy might be measured by a
multiple regression using payment success as the dependent variable and a 0 or
1 explanatory variable (1 if the new program was applied; 0 if it was not). Failure

in a regression analysis to compute back pay in employment discrimination. According to the court, including
the prehire level would have resulted in a finding of no sex discrimination, despite a contrary conclusion in the
liability phase of the action. Id.  See also  Stuart v. Roache, 951 F.2d 446 (1st Cir. 1991) (allowing only three
years of seniority to be considered due to prior discrimination), cert. denied, 112 S. Ct. 1948 (1992).

20. The summary effect of the excluded variables shows up as a random error term in the regression model,
as does any modeling error. See infra the Appendix for details.

21. A very low R-square (R 2) is one indication of an unexplained portion of the multiple regression model
that is unacceptably high. For reasons discussed in the Appendix, however, a low R 2 does not necessarily imply
a poor model (and vice versa).

22. Technically, the omission of explanatory variables which are correlated with the variable of interest can
cause biased estimates of regression parameters.

23. The effect tends to be important, the stronger the relationship between the omitted variable and the
dependent variable, and the stronger the correlation between the omitted variable and the explanatory vari -
ables of interest.

24. See  Bazemore v. Friday, 751 F.2d 662, 671–72 (4th Cir. 1984) (upholding the district court’s refusal to
accept a multiple regression analysis as proof of discrimination by a preponderance of the evidence, the court
of appeals stated that, although the regression used four variable factors, consisting of race, education, tenure,
and job title, the failure to use other factors, including pay increases which varied by county, precluded their
introduction into evidence), aff’d in part , vacated in part , 478 U.S. 385 (1986).

Note, however, that in Sobel v. Yeshiva Univ., 839 F.2d 18, 33, 34 (2d Cir. 1988), cert. denied , 490 U.S.
1105 (1989), the court made clear that “a [Title VII] defendant challenging the validity of a multiple regres sion
analysis [has] to make a showing that the factors it contends ought to have been included would weaken the
showing of salary disparity made by the analysis,” by making a specific attack and “a showing of relevance for
each particular variable it contends . . . ought to [be] includ[ed]” in the analysis, rather than by simply at -
tacking the results of the plaintiffs’ proof as inadequate for lack of a given variable.

Also, in Bazemore v. Friday, the Court, declaring that the Fourth Circuit’s view of the evidentiary value of
the regression analyses was plainly incorrect, stated that “[n]ormally, failure to include variables will affect the
analysis’ probativeness, not its admissibility. Importantly, it is clear that a regression analysis that includes less
than ‘all measurable variables’ may serve to prove a plaintiff’s case.” 478 U.S. 385, 400 (1986) (footnote omit -
ted).
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to include an explanatory variable that reflected the age of the husbands in-
volved in the program would not affect the court’s evaluation of the new policy,
since men of any given age are as likely to be affected by the old as the new pol-
icy. Choosing the court’s policy by chance has ensured that the omitted age
variable is not correlated with the policy variable.

Bias caused by the omission of important variables that are related to the in-
cluded variables of interest can be a serious problem.25 Nevertheless, it is pos-
sible to account for bias qualitatively if the expert has knowledge (even if not
quantifiable) about the relationship between the omitted variable and the ex-
planatory variable. Suppose, for example, that the plaintiff’s expert in a sex dis-
crimination pay case is unable to obtain quantifiable data that reflect the skills
necessary for a job, and that, on average, women are more skillful than men.
Suppose also that a regression of the wage rate of employees (the dependent
variable) on years of experience and a variable reflecting the sex of each em-
ployee (the explanatory variable) suggests that men are paid substantially more
than women with the same experience. Because differences in skill levels have
not been taken into account, the expert may conclude reasonably that the wage
difference measured by the regression is a conservative estimate of the true dis-
criminatory wage difference.

The precision of the measure of the effect of a variable of interest on the de-
pendent variable is also important.26 In general, the more complete the ex-
plained relationship between the included explanatory variables and the depen-
dent variable, the more precise the results. Note, however, that the inclusion of
explanatory variables that are irrelevant (i.e., that are not correlated with the de-
pendent variable) reduces the precision of the regression results. This can be a
source of concern when the sample size is small, but it is not likely to be of great
consequence when the sample size is large.

4. Choosing the functional form of the multiple regression model

Choosing the proper set of variables to be included in the multiple regression
model does not complete the modeling exercise. The expert must also choose
the proper form of the regression model. The most frequently selected form is
the linear regression  model (described in the Appendix). In this model the mag-
nitude of the change in the dependent variable associated with the change in
any of the explanatory variables is the same no matter what the level of that ex-
planatory variable. For example, one additional year of experience might add
$5,000 to salary, irrespective of the previous experience of the employee.

25. See also  Linda A. Bailey et al., Reference Guide on Epidemiology § IV.A, and David H. Kaye & David
A. Freedman, Reference Guide on Statistics § II.C.2, in this manual.

26. A more precise estimate of a parameter is an estimate with a smaller standard error. See infra  the
Appendix for details.
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In some instances, however, there may be reason to believe that changes in
explanatory variables will have differential effects on the dependent variable as
the values of the explanatory variables change. In this case, the expert should
consider the use of a nonlinear  model . Failure to account for nonlinearities can
lead to either overstatement or understatement of the effect of a change in the
value of an explanatory variable on the dependent variable.

One particular type of nonlinearity involves the interaction among several
variables. An interaction variable is the product of two other variables that are
included in the multiple regression model. The interaction variable allows the
expert to take into account the possibility that the effect of a change in one vari-
able on the dependent variable may change as the level of another explanatory
variable changes. For example, in a salary discrimination case, the inclusion of a
term that interacts a variable measuring experience with a variable representing
the sex of the employee (1 if a female employee, 0 if a male employee) allows
the expert to test whether the sex differential varies with the level of experience.
A significant negative estimate of the parameter associated with the sex variable
suggests that inexperienced women are discriminated against, while a significant
negative estimate of the interaction parameter suggests that the extent of discrim-
ination increases with experience.27

Note that insignificant coefficients  in a model with interactions may suggest a
lack of discrimination, while a model without interactions may suggest the con-
trary. It is especially important to account for the interactive nature of the dis-
crimination; failure to do so may lead to false conclusions concerning discrimi-
nation.

5. Choosing multiple regression as a method of analysis

There are many multivariate statistical techniques other than multiple regression
that are useful in legal proceedings. Some statistical methods are appropriate
when nonlinearities are important.28 Others apply to models in which the
dependent variable is discrete, rather than continuous.29 Still others have been
applied predominantly to respond to methodological concerns arising in the
context of discrimination litigation.30

27. For further details, see infra the Appendix.
28. These techniques include, but are not limited to, piecewise linear regression, polynomial regression,

maximum likelihood estimation of models with nonlinear functional relationships, and autoregressive and
moving average time-series models. See , e.g. , Robert S. Pindyck & Daniel L. Rubinfeld, Econometric Models
& Economic Forecasts 101–04, 117–20, 238–44, 472–560 (3d ed. 1991).

29. For a discussion of probit and logit analysis, techniques that are useful in the analysis of qualitative
choice, see id. at 248–81.

30. The correct model for use in salary discrimination suits is a subject of debate among labor economists.
As a result, some have begun to evaluate alternatives approaches. These include urn models (Bruce Levin &
Herbert Robbins, Urn Models for Regression Analysis, with Applications to Employment Discrimination Studies ,
Law & Contemp. Probs., Autumn 1983, at 247); and reverse regression (Delores A. Conway & Harry V.
Roberts, Reverse Regression, Fairness, and Employment Discrimination, 1 J. Bus. & Econ. Stat. 75 (1983)). But
see  Arthur S. Goldberger, Redirecting Reverse Regressions , 2 J. Bus. & Econ. Stat. 114 (1984), and Arlene S.
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It is essential that a valid statistical method be applied to assist with the analy-
sis in each legal proceeding. Therefore, the expert should be prepared to explain
why any chosen method, including regression, was more suitable than the alter-
natives.

Ash, The Perverse Logic of Reverse Regression , in  Statistical Methods in Discrimination Litigation 85 (David H.
Kaye & Mikel Aickin eds., 1986).
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III. Interpreting Regression Results

Regression results can be interpreted in purely statistical terms, through the use
of significance tests, or they can be interpreted in a more practical, nonstatistical
manner. While an evaluation of the practical significance  of regression results is
almost always relevant in the courtroom, tests of statistical significance  are ap-
propriate only in particular circumstances.

A. What Is the Practical as Opposed to the Statistical Significance of
Regression Results?

Practical significance means that the magnitude of the effect being studied is
not de minimis—it is sufficiently important substantively for the court to be con-
cerned. For example, if the average wage rate is $10.00 per hour, a wage differ-
ential between men and women of $0.10 per hour is likely to be deemed practi-
cally insignificant because the differential represents only 1% ($0.10/$10.00) of
the average wage rate. 31 That same difference could be statistically significant,
however, if a sufficiently large sample of men and women was studied.32 The
reason is that statistical significance is determined, in part, by the number of ob-
servations in the data set.

Other things being equal, the statistical significance of a regression coefficient
increases as the sample size increases. Often, results that are practically signifi-
cant are also statistically significant. 33 It is possible with a large data set to find a
number of statistically significant coefficients that are practically insignificant.
Similarly, it is also possible (especially when the sample size is small) to obtain

31. There is no specific percentage threshold above which a result is practically significant. Practical sig -
nificance must be evaluated in the context of a particular legal issue. See also  David H. Kaye & David A.
Freedman, Reference Guide on Statistics § IV.B.2, in this manual.

32. Practical significance also can apply to the overall credibility of the regression results. Thus, in
McClesky v. Kemp, 481 U.S. 279 (1987), coefficients on race variables were statistically significant, but the
Court declined to find them legally or constitutionally significant.

33. In Melani v. Board of Higher Educ., 561 F. Supp. 769, 774 (S.D.N.Y. 1983), a Title VII suit was
brought against the City University of New York (CUNY) for allegedly discriminating against female instruc -
tional staff in the payment of salaries. One approach of the plaintiff’s expert in the case was to use multiple re -
gression analysis. The coefficient on the variable that reflected the sex of the employee was approximately
equal to $1,800 when all years of data were included. Practically (in terms of average wages at the time) and
statistically (in terms of a 5% significance test) this result was significant. Thus, the court stated that “[p]laintiffs
have produced statistically significant  evidence that women hired as CUNY instructional staff since 1972 re -
ceived substantially  lower salaries than similarly qualified men.” (emphasis added). Id. at 781.
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results that are practically significant but statistically insignificant. Suppose, for
example, that an expert undertakes a damage study in a patent infringement case
and predicts but-for sales—what sales would have been had the infringement not
occurred—using data that predate the period of alleged infringement. If data
limitations are such that only three or four years of pre-infringement sales are
known, the difference between but-for sales and actual sales during the period of
alleged infringement could be practically significant but statistically insignifi-
cant.

1. When should statistical tests of significance be used?

A test of a specific contention—a hypothesis test —often assists the court in de-
termining whether a violation of the law has occurred in areas where direct evi-
dence is inaccessible or inconclusive. For example, an expert might use hypoth-
esis tests in race and sex discrimination cases to determine the presence of dis-
criminatory effect.

Statistical evidence alone never can prove with absolute certainty the worth of
any substantive theory. However, by providing evidence contrary to the view that
a particular form of discrimination has not occurred, for example, the multiple
regression approach can aid the trier of fact in assessing the likelihood that dis-
crimination has occurred.34

Tests of hypotheses are appropriate in a cross-section analysis , when the data
underlying the regression study have been chosen as a sample of a population at
a particular point in time, and in a time-series  analysis, when the data being
evaluated cover a number of time periods. In either case, the expert may want to
evaluate a specific hypothesis, usually relating to a question of liability or to the
determination of whether there is measurable impact of an alleged violation.
Thus, in a sex discrimination case, an expert may want to evaluate a null hy -
pothesis  of no discrimination against the alternative hypothesis  that discrimina -
tion takes a particular form.35 Alternatively, in an antitrust damage proceeding,
the expert may want to test a null hypothesis of no impact against the alternative
hypothesis that there was legal impact. In either type of case, it is important to
realize that rejection of the null hypothesis does not in itself prove legal liability.
It is possible to reject the null hypothesis and believe that an alternative explana-
tion other than one involving legal liability accounts for the results.

Often, the null hypothesis is stated in terms of a particular regression parame-
ter being equal to 0. For example, in a wage discrimination case, the null hy-
pothesis would be that there is no wage difference between sexes. If a negative
difference is observed (meaning that women earn less than men after the expert

34. See  International Bhd. of Teamsters v. United States, 431 U.S. 324 (1977) (the Court inferred discrim-
ination from overwhelming statistical evidence by a preponderance of the evidence).

35. Tests are also appropriate when comparing the outcomes of a set of employer decisions with those that
would have been obtained had the employer chosen differently from among the available options.
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has controlled statistically for legitimate alternative explanations), the difference
is evaluated as to its statistical significance using the t-test.36 The t-test uses the t-
statistic to evaluate the hypothesis that a model parameter takes on a particular
value, usually 0.

2. What is the appropriate level of statistical significance?

In most scientific work, the level of statistical significance required to reject the
null hypothesis (i.e., to obtain a statistically significant result) is set convention-
ally at .05, or 5%.37 The significance level measures the probability that the null
hypothesis will be rejected incorrectly, assuming that the null hypothesis is true.
In general, the lower the percentage required for statistical significance, the
more difficult it is to reject the null hypothesis; therefore, the lower the probabil-
ity that one will err in doing so. While the 5% criterion is typical, reporting of
more stringent 1% significance tests or less stringent 10% tests can also provide
useful information.

In doing a statistical test, it is useful to compute an observed significance
level, or p-value . The p-value associated with the null hypothesis that a regres-
sion coefficient is 0 is the probability that a coefficient of this magnitude or
larger could have occurred by chance if the null hypothesis were true. If the p-
value were less than or equal to 5%, the expert would reject the null hypothesis
in favor of the alternative hypothesis; if the p-value were greater than 5%, the ex-
pert would fail to reject the null hypothesis.38

3. Should statistical tests be one-tailed or two-tailed?

When the expert evaluates the null hypothesis that a variable of interest has no
association  with a dependent variable against the alternative hypothesis that
there is an association, a two-tailed test  that allows for the effect to be either posi-
tive or negative is usually appropriate. A one-tailed test  would usually be applied
when the expert believes, perhaps on the basis of other direct evidence presented
at trial, that the alternative hypothesis is either positive or negative, but not both.
For example, an expert might use a one-tailed test in a patent infringement case

36. The t -test is strictly valid only if a number of important assumptions hold. However, for many regres sion
models, the test is approximately valid if the sample size is sufficiently large. See infra  the Appendix for a more
complete discussion of the assumptions underlying multiple regression.

37. See , e.g. , Palmer v. Shultz, 815 F.2d 84, 92 (D.C. Cir. 1987) (“‘the .05 level of significance . . . [is]
certainly sufficient to support an inference of discrimination’”) (quoting Segar v. Smith, 738 F.2d 1249, 1283
(D.C. Cir. 1984), cert. denied, 471 U.S. 1115 (1985)). See also  David H. Kaye & David A. Freedman,
Reference Guide on Statistics § IV.B.2, in this manual.

38. The use of 1%, 5%, and, sometimes, 10% rules for determining statistical significance remains a subject
of debate. One might argue, for example, that when regression analysis is used in a price-fixing antitrust case to
test a relatively specific alternative to the null hypothesis (e.g., price fixing), a somewhat lower level of
confidence (a higher level of significance, such as 10%) might be appropriate. Otherwise, when the alternative
to the null hypothesis is less specific, such as the rather vague alternative of “effect” (e.g., the price increase is
caused by the increased cost of production, increased demand, a sharp increase in advertising, or price fixing),
a high level of confidence (associated with a low significance level, such as 1%) may be appropriate.
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if he or she strongly believed that the effect of the alleged infringement on the
price of the infringed product was either 0 or negative. (The sales of the infring-
ing product competed with the sales of the infringed product, thereby lowering
the price.)

Because one-tailed tests produce p-values that are one-half the size of the p-
value using a two-tailed test, the choice of a one-tailed test makes it easier for the
expert to reject a null hypothesis. Correspondingly, the choice of a two-tailed
test makes null hypothesis rejection less likely. Since there is some arbitrariness
involved in the choice of an alternative hypothesis, courts should avoid relying
solely on sharply defined statistical tests.39 Reporting the p-value should be en-
couraged, since it conveys useful information to the court, whether or not a null
hypothesis is rejected.

B. Are the Regression Results Robust—Sensitive to Changes in
Assumptions and Procedures?

The issue of robustness —whether regression results are sensitive to slight modi-
fications in assumptions (e.g., that the data are measured accurately)—is of vital
importance for the courts. If the assumptions of the regression model are valid,
standard statistical tests can be applied. However, when the assumptions of the
model are imprecise, standard tests can overstate or understate the significance
of the results.

The violation of an assumption does not necessarily invalidate a regression
analysis, however. In some cases in which the assumptions of multiple regression
analysis fail, there are more advanced statistical methods that are appropriate.
Consequently, experts should be encouraged to provide additional information
that goes to the issue of whether regression assumptions are valid, and if they are
not valid, the extent to which the regression results are robust. The following
questions highlight some of the more important assumptions of regression analy-
sis.

1. What evidence exists that the explanatory variable causes changes in the de-
pendent variable?

In the multiple regression framework, the expert often assumes that changes in
explanatory variables affect the dependent variable, but changes in the depen-
dent variable do not affect the explanatory variables—that is, there is no feed-
back. 40 In making this assumption, the expert draws the conclusion that a cor-
relation between an explanatory variable and the dependent variable is due to

39. Courts have shown a preference for two-tailed tests. See  Palmer v. Shultz, 815 F.2d 84, 95–96 (D.C.
Cir. 1987) (rejecting the use of one-tailed tests, the court found that because some appellants were claiming
overselection for certain jobs, a two-tailed test was more appropriate in Title VII cases). See also  David H. Kaye
& David A. Freedman, Reference Guide on Statistics § IV.B.3.b, in this manual.

40. When both effects occur at the same time, this is described as simultaneity.
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the effect of the former on the latter and not vice versa. Were the assumption not
valid, spurious correlation might cause the expert and the trier of fact to reach
the wrong conclusion.41

Figure 1 illustrates this point. In Figure 1(a), the dependent variable, Price, is
explained through a multiple regression framework by three explanatory vari-
ables, Demand, Cost, and Advertising, with no feedback. In Figure 1(b), how-
ever, there is feedback since Price affects Demand, and Demand, Cost, and
Advertising affect Price. Cost and Advertising, however, are not affected by
Price. As a general rule, there is no direct statistical test for determining the di-
rection of causality. Rather the expert, when asked, should be prepared to de-
fend his or her assumption based on an understanding of the underlying behav-
ior of the firms or individuals involved.

Although there is no single approach that is entirely suitable for estimating
models when the dependent variable affects one or more explanatory variables,
one possibility is for the expert to drop the questionable variable from the regres-
sion to determine whether the variable’s exclusion makes a difference. If it does
not, the issue becomes moot. Second, the expert can expand the multiple re-
gression model by adding one or more equations that explain the relationship
between the explanatory variable in question and the dependent variable.

41. This is especially important in litigation, because it is possible for the defendant (if responsible, for ex -
ample, for price fixing or discrimination) to affect the values of the explanatory variables and thus to bias the
usual statistical tests that are used in multiple regression.
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Figure 1
Feedback
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Suppose, for example, that in a salary-based sex discrimination suit the defen-
dant’s expert considers employer-evaluated test scores to be an appropriate ex-
planatory variable for the dependent variable, salary. If the plaintiff were to pro-
vide information that the employer adjusted the test scores in a manner that pe-
nalized women, the assumption that salaries were determined by test scores and
not that test scores were affected by salaries might be invalid. If it is clearly inap-
propriate, the test-score variable should be removed from consideration.
Alternatively, the information about the employer’s use of the test scores could
be translated into a second equation in which a new dependent variable, test
score, is related to workers’ salary and sex. A test of the hypothesis that salary and
sex affect test scores would provide a suitable test of the absence of feedback.

2. To what extent are the explanatory variables correlated with each other?

It is essential in multiple regression analysis that the explanatory variable of in-
terest not be correlated perfectly with one or more of the other explanatory vari-
ables. If there were perfect correlation between two variables, the expert could
not separate out the effect of the variable of interest on the dependent variable
from the effect of the other variable. Suppose, for example, that in a sex discrim-
ination suit a particular form of job experience is determined to be a valid
source of high wages. If all men had the requisite job experience and all women
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did not, it would be impossible to tell whether wage differentials between men
and women were due to sex discrimination or differences in experience.

When two or more explanatory variables are correlated perfectly—that is,
when there is perfect collinearity —one cannot estimate the regression parame-
ters. When two or more variables are highly, but not perfectly, correlated—that
is, when there is multicollinearity —the regression can be estimated, but some
concerns remain. The greater the multicollinearity between two variables, the
less precise are the estimates of individual regression parameters (even though
there is no problem in estimating the joint influence of the two variables and all
other regression parameters).

Fortunately, the reported regression statistics take into account any multi-
collinearity that might be present.42 It is important to note as a corollary, how-
ever, that a failure to find a strong relationship between a variable of interest and
a dependent variable need not imply that there is no relationship.43 A relatively
small sample, or even a large sample with substantial multicollinearity, may not
provide sufficient information for the expert to determine whether there is a re-
lationship.

3. To what extent are individual errors in the regression model independent?

If the parameters of a multiple regression model were calculated using the entire
universe of data (the population), the estimates might still measure the model’s
population parameters with error. Errors can arise for a number of reasons, in-
cluding (a) the failure of the model to include the appropriate explanatory vari-
ables; (b) the failure of the model to reflect any nonlinearities that might be pre-
sent; and (c) the inclusion of inappropriate variables in the model. (Of course,
fur ther sources of error will arise if a sample of the population is used to estimate
the regression parameters.)

It is useful to view the cumulative effect of all of these sources of modeling er -
ror as being represented by an additional variable, the error term, in the multiple
regression model. An important assumption in multiple regression analysis is
that the error term and each of the explanatory variables are independent of each
other. (If the error term and the explanatory variable are independent, they are
not correlated with each other.) To the extent this is the case, the expert can es-
timate the parameters of the model without bias; the magnitude of the error
term will affect the precision with which a model parameter is estimated, but
will not cause that estimate to be consistently too high or too low.

42. See  Denny v. Westfield State College, 669 F. Supp. 1146, 1149 (D. Mass. 1987) (the court accepted
the testimony of one expert that “the presence of multicollinearity would merely tend to overestimate  the
amount of error associated with the estimate . . . . In other words, P-values will be artificially higher than they
would be if there were no multicollinearity present.”) (emphasis added).

43. If a variable of interest and another explanatory variable are highly correlated, dropping the second
variable from the regression can be instructive. If the coefficient on the variable of interest becomes significant,
a relationship between the dependent variable and the variable of interest is suggested.
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The assumption of independence  may be inappropriate in a number of cir-
cumstances. In some cases, failure of the assumption makes multiple regression
analysis an unsuitable statistical technique; in other cases, modifications or ad-
justments within the regression framework can be made to accommodate the
failure.

The independence assumption may fail, for example, in a study of individual
behavior over time, in which an unusually high error value in one time period is
likely to lead to an unusually high value in the next time period. For example, if
an economic forecaster underpredicted this year’s Gross National Product
(GNP), he or she is likely to underpredict next year’s as well; the factor that
caused the prediction error (e.g., an incorrect assumption about Federal Reserve
policy) is likely to be a source of error in the future.

Alternatively, the assumption of independence may fail in a study of a group
of firms at a particular point in time, in which error terms for large firms are sys-
tematically higher than error terms for small firms. For example, an analysis of
the profitability of firms may not accurately account for the importance of adver-
tising as a source of increased sales and profits. To the extent that large firms ad-
vertise more than small firms, the regression errors would be large for the large
firms and small for the small firms.

In some cases, there are statistical tests that are appropriate for evaluating the
independence assumption.44 If the assumption has failed, the expert should ask
first whether the source of the lack of independence is the omission of an impor-
tant explanatory variable from the regression. If so, that variable should be in-
cluded when possible, or the potential effect of its omission should be estimated
when inclusion is not possible. If there is no important missing explanatory vari-
able, the expert should apply one or more procedures that modify the standard
multiple regression technique to allow for more accurate estimates of the regres -
sion parameters.45

4. To what extent are the regression results sensitive to individual data points?

Estimated regression coefficients can be highly sensitive to particular data
points. Suppose, for example, that one data point deviates greatly from its ex-
pected value, as indicated by the regression equation, while the remaining data
points show little deviation. It would not be unusual in this situation for the co-

44. In a time-series analysis, the correlation of error values over time, the serial correlation , can be tested (in
most cases) using a Durbin-Watson test. The possibility that some disturbance terms are consistently high in
magnitude while others are systematically low, heteroscedasticity , can also be tested in a number of ways. See,
e.g. , Pindyck & Rubinfeld, supra  note 28, at 126–56.

45. When serial correlation is present, a number of closely related statistical methods are appropriate, in -
cluding generalized differencing (a type of generalized least-squares) and maximum-likelihood estimation.
When heteroscedasticity is the problem, weighted least-squares  and maximum-likelihood estimation are ap-
propriate. See, e.g. , Pindyck & Rubinfeld, supra  note 28, at 126–56. All these techniques are readily available
in a number of statistical computer packages. They also allow one to perform the appropriate statistical tests of
the significance of the regression coefficients.
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efficients in a multiple regression to change substantially if the data point were
removed from the sample.

Evaluating the robustness of multiple regression results is a complex en-
deavor. Consequently, there is no agreed on set of tests for robustness which ana-
lysts should apply. In general, it is important to explore the reasons for unusual
data points. If the source is an error in recording data, the appropriate correc-
tions can be made. If all the unusual data points have certain characteristics in
common (e.g., they all are associated with a supervisor who consistently gives
high ratings in an equal pay case), the regression model should be modified ap-
propriately.

One generally useful diagnostic technique is to see to what extent the esti-
mated parameter changes as each data point (or points) in the regression analysis
is dropped from the sample. An influential data point—a point that causes the
estimated parameter to change substantially—should be studied further to see
whether mistakes were made in the use of the data or whether important ex-
planatory variables were omitted.46

5. To what extent are the data subject to measurement error?

In multiple regression analysis it is assumed that variables are measured accu-
rately.47 If there are measurement errors in the dependent variable, estimates of
regression parameters will be less accurate, though they will not necessarily be
biased. However, if one or more independent variables are measured with error,
the corresponding parameter estimates are likely to be biased, typically toward
0.48

To understand why, suppose that the dependent variable, salary, is measured
without error, and the explanatory variable, experience, is subject to measure-
ment error. (Seniority or years of experience should be accurate, but the type of
experience is subject to error, since applicants may overstate previous job re-
sponsibilities.) As the measurement error increases, the estimated parameter as-
sociated with the experience variable will tend toward 0—eventually, there will
be no relationship between salary and experience.

It is important for any source of measurement error to be carefully evaluated.
In some circumstances, little can be done to correct the measurement error
problem; the regression results must be interpreted in that light. In other cases,
however, measurement errors can be corrected by finding a new, more reliable
data source. Finally, alternative estimation techniques (using related variables

46. A more complete and formal treatment of the robustness issue appears in David A. Belsley et al.,
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (1980).

47. Inaccuracy can occur not only in the precision by which a particular variable is measured, but also in
the precision with which the variable to be measured corresponds to the appropriate theoretical construct spec-
ified by the regression model.

48. Other coefficient estimates are likely to be biased as well.
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that are measured without error) can be applied to remedy the measurement er-
ror problem in some situations.49

49. See, e.g., Pindyck & Rubinfeld, supra note 28, at 157–79 (discussion of instrumental variables estima -
tion ).
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IV. The Expert

Multiple regression analysis is taught to students in an extremely diverse set of
fields, including statistics, economics, political science, sociology, psychology,
anthropology, public health, and history. Consequently, any individual with
substantial training in and experience with multiple regression and other statisti -
cal methods may be qualified as an expert.50 A doctoral degree in a discipline
that teaches theoretical or applied statistics, such as economics, history, and psy-
chology, usually signifies to other scientists that the proposed expert meets this
preliminary test of the qualification process.

The decision to qualify an expert in regression analysis rests with the court.
Clearly, the proposed expert should be able to demonstrate an understanding of
the discipline. Publications relating to regression analysis in peer-reviewed jour-
nals, active memberships in related professional organizations, courses taught on
regression methods, and practical experience with regression can indicate a pro-
fessional’s expertise. However, the expert’s background and experience with the
specific issues and tools that are applicable to a particular case should also be
considered during the qualification process.

50. A proposed expert whose only statistical tool is regression analysis may not be able to judge when a sta -
tistical analysis should be based on an approach other than regression.
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V. Presentation of Statistical Evidence

The costs of evaluating statistical evidence can be reduced and the precision of
that evidence increased if the discovery process is used effectively. The following
questions should be considered in evaluating the admissibility of statistical evi-
dence.51 These considerations are motivated by two concerns: (1) Has the ex pert
provided sufficient information to replicate the multiple regression analysis? (2)
Are the methodological choices that the expert made reasonable, or are they
arbitrary and unjustified?

A. What Disagreements Exist Regarding Data on Which the Analysis Is
Based?

In general, a clear and comprehensive statement of the underlying research
methodology is a requisite part of the discovery process. The expert should be
encouraged to reveal both the nature of the experimentation carried out and the
sensitivity of the results to the data and to the methodology. The following are
suggestions of a number of useful requirements that can substantially improve
the discovery process.

1. To the extent possible, the parties should be encouraged to agree to use
a common database. Early agreement on a common database, even if
disagreement about the significance of the data remains, can help focus
the discovery process on the important issues in the case.

2. A party that offers data to be used in statistical work, including multiple
regression analysis, should be encouraged to provide the following to the
other parties: (a) a hard copy of the data when available and manageable
in size, along with the underlying sources; (b) computer disks or tapes
on which the data are recorded; (c) complete documentation of the
disks or tapes; (d) computer programs that were used to generate the
data (in hard copy, on a computer disk or tape, or both); and (e) docu-
mentation of such computer programs.

51. See also  David H. Kaye & David A. Freedman, Reference Guide on Statistics § I.B, in this manual.
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3. A party offering data should make available the personnel involved in
the compilation of such data to answer the other parties’ technical ques-
tions concerning the data and the methods of collection or compilation.

4. A party proposing to offer an expert’s regression analysis at trial should
ask the expert to fully disclose: (a) the database and its sources; 52 (b) the
method of collecting the data; and (c) the methods of analysis. When
possible, this disclosure should be made sufficiently in advance of trial
so that the opposing party can consult its experts and prepare cross-
examination. The court must decide on a case-by-case basis where to
draw the disclosure line.

5. An opposing party should be given the opportunity to object to a
database or to a proposed method of analysis of the database to be of-
fered at trial. Objections may be to simple clerical errors or to more
complex issues relating to the selection of data, the construction of vari-
ables, and, on occasion, the particular form of statistical analysis to be
used. Whenever possible, these objections should be resolved before
trial.

6. The parties should be encouraged to resolve differences as to the appro-
priateness and precision of the data to the extent possible by informal
conference. The court should make an effort to resolve differences be-
fore trial.

B. What Database Information and Analytical Procedures Will Aid in
Resolving Disputes over Statistical Studies? 53

1. The expert should state clearly the objectives of the study, as well as the
time frame to which it applies and the statistical population to which the
results are being projected.

2. The expert should report the units of observation (e.g., consumers, busi-
nesses, or employees).

3. The expert should clearly define each variable.

4. The expert should clearly identify the sample of data being studied,54 as
well as the method by which the sample was obtained.

52. These sources would include all variables used in the statistical analyses conducted by the expert, not
simply those variables used in a final analysis on which the expert expects to rely.

53. For a more complete discussion of these requirements, see The Evolving Role of Statistical Assessments
as Evidence in the Courts app. F at 256 (Stephen E. Fienberg ed., 1989) (Recommended Standards on
Disclosure of Procedures Used for Statistical Studies to Collect Data Submitted in Evidence in Legal Cases).

54. The sample information is important because it allows the expert to make inferences about the under -
lying population.
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5. The expert should reveal if there are missing data, whether caused by a
lack of availability (e.g., in business data) or nonresponse (e.g., in survey
data), and the method used to handle the missing data (e.g., deletion of
observations).

6. The expert should report investigations that were made into errors asso-
ciated with the choice of variables and assumptions underlying the re-
gression model.

7. If samples have been chosen randomly from a population (i.e., probabil -
ity sampling  procedures have been used),55 the expert should make a
good faith effort to provide an estimate of a  sampling error,  the measure
of the difference between the sample estimate of a parameter (such as
the mean  of a dependent variable under study) and the (unknown) pop-
ulation parameter (the population mean of the variable).56

8. If probability sampling procedures have not been used, the expert
should report the set of procedures that were used to minimize sampling
errors.

55. In probability sampling, each representative of the population has a known probability of being in the
sample. Probability sampling is ideal because it is highly structured, and in principle, it can be replicated by
others. Nonprobability sampling is less desirable because it is often subjective, relying to a large extent on the
judgment of the expert.

56. Sampling error is often reported in terms of standard errors or confidence intervals.  See infra the
Appendix for details.
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Appendix: The Basics of Multiple Regression

I. Introduction
This appendix illustrates, through examples, the basics of multiple regression
analysis in legal proceedings.

Often, visual displays are used to describe the relationship between variables
that are used in multiple regression analysis. Figure 2 is a scatterplot  that relates
scores on a job aptitude test (shown on the x-axis) and job performance ratings
(shown on the y-axis). Each point on the scatterplot shows where a particular in-
dividual scored on the job aptitude test and how his or her job performance was
rated. For example, the individual represented by Point A in Figure 2 scored 49
on the job aptitude test and had a job performance rating of 62.

Figure 2
Scatterplot
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The relationship between two variables can be summarized by a correlation
coefficient, which ranges in value from -1 (a perfect negative relationship) to +1
(a perfect positive relationship). Figure 3 depicts three possible relationships be-
tween the job aptitude variable and the job performance variable. In Figure 3(a)
there is a positive correlation: In general, higher job performance ratings are
associated with higher aptitude test scores, and lower job performance ratings
are associ ated with lower aptitude test scores. In Figure 3(b) the correlation is
negative: Higher job performance ratings are associated with lower aptitude test
scores, and lower job performance ratings are associated with higher aptitude
test scores. Positive and negative correlations can be relatively strong or relatively
weak. If the relationship is sufficiently weak, there is effectively no correlation, as
is illustrated in Figure 3(c).

Figure 3
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3(b).  Negative correlation

•

•

•

•

•

•

•

•

•
•

Jo
b 

Pe
rfo

rm
an

ce
 R

at
in

g

Job Aptitude Test Score

3(a).  Positive correlation



Multiple Regression 447

Multiple regression analysis goes beyond the calculation of correlations; it is a
method in which a regression line is used to relate the average of one variable—
the dependent variable—to the values of other explanatory variables. As a result,
regression analysis can be used to predict the values of one variable using the
values of others. For example, if average job performance ratings depend on ap-
titude test scores, regression analysis can use information about test scores to
predict job performance.

A regression line is the best-fitting straight line through a set of points in a
scatterplot. If there is only one explanatory variable, the straight line is defined
by the equation:

  Y = a + bX

In the equation above, a is the intercept  of the line with the y-axis when X equals
0, and b  is the slope —the amount of vertical change in the line for each unit of
change in the horizontal direction. In Figure 4, for example, when the aptitude
test score is 0, the predicted (average) value of the job performance rating is the
intercept, 18.4. Also, for each additional point on the test score, the job perfor-
mance rating increases .73 units, which is given by the slope .73. Thus, the es-
timated regression line is:

      Ŷ = 18.4 +.73 X

The regression line typically is estimated using the standard method of least-
squares , where the values of a and b are calculated so that the sum of the
squared deviations of the points from the line are minimized. In this way, posi-
tive deviations and negative deviations of equal size are counted equally, and
large deviations are counted more then small deviations. In Figure 4 the devia-
tion lines are vertical because the equation is predicting job performance ratings
from aptitude tests scores, not aptitude test scores from job performance ratings.
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Figure 4
Regression Line
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The important variables that systematically might influence the dependent
variable, and for which data can be obtained, typically should be included ex-
plicitly in a statistical model. All remaining influences, which should be small
individually, but can be substantial in the aggregate, are included in an addi-
tional random error term.57 Multiple regression is a procedure that separates the
systematic effects (associated with the explanatory variables) from the random
effects (associated with the error term) and also offers a method of assessing the
success of the process.

II. Linear Regression Model
When there is an arbitrary number of explanatory variables, the linear regres-

sion  model takes the following form:

      Y = β0 + β1X1 + β2 X2 +K + βk X k + ε (1)

where  Y represents the dependent variable, such as the salary of an employee,
and X 1 . . . Xk represent the explanatory variables (e.g., the experience of each
employee and his or her sex, coded as a 1 or 0, respectively). The error term ε
represents the collective unobservable influence of any omitted variables. In a

57. It is clearly advantageous for the random component of the regression relationship to be small relative
to the variation in the dependent variable.
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linear regression each of the terms being added involves unknown parameters,
β0, β1, . . . βk,58 which are estimated by “fitting” the equation to the data using
least-squares.

Most statisticians use the least-squares regression technique because of its
simplicity and its desirable statistical properties. As a result, it also is used fre-
quently in legal proceedings.

A. An Example

Suppose an expert wants to analyze the salaries of women and men at a large
publishing house to discover whether a difference in salaries between employees
with similar years of work experience provides evidence of discrimination.59 To
begin with the simplest case, Y, the salary in dollars per year, represents the de-
pendent variable to be explained, and X1 represents the explanatory variable—
the number of years of experience of the employee. The regression model would
be written:

    Y = β0 + β1 X1 + ε (2)

In equation (2), β0  and β1  are the parameters to be estimated from the data,
and ε is the random error term. The parameter β0  is the average salary of all em-
ployees with no experience. The parameter β1  measures the average effect of an
additional year of experience on the average salary of employees.

B. Regression Line

Once the parameters in a regression equation, such as equation (1), have been
estimated, the fitted  values  for the dependent variable can be calculated. If we
denote the estimated regression parameters, or regression coefficients, for the
model in equation (1) by b0, b1 , . . . b k, the fitted values for   Y , denoted     ̂Y , are
given by:

      Ŷ = b0 + b1 X1 + b2 X 2 +K bk X k (3)

Figure 5 illustrates this for the example involving a single explanatory vari-
able. The data are shown as a scatter of points; salary is on the vertical axis and
years of experience is on the horizontal axis. The estimated regression line is
drawn through the data points. It is given by:

58. The variables themselves can appear in many different forms. For example, Y might represent the loga -
rithm of an employee’s salary, and X1 might represent the logarithm of the employee’s years of experience. The
logarithmic representation is appropriate when Y increases exponentially as X increases—for each unit in crease
in X,  the corresponding increase in Y becomes larger and larger. For example, if an expert were to graph
growth of U.S. population ( Y) over time (t), an equation of the form log(Y) = β0 + β1log( t) might be appropri-
ate.

59. The regression results used in this example are based on data for 1,715 men and women, which were
used by the defense in a sex discrimination case against the New York Times that was settled in 1978. Professor
Orley Ashenfelter, of the Department of Economics, Princeton University, provided the data.
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    Ŷ = $15,000 + $2,000 X1 (4)

Thus, the fitted value for the salary associated with an individual’s years of expe-
rience X1i is given by:

      Ŷ i = b0 + b1 X1 i  (at Point  B )

The intercept of the straight line is the average value of the dependent vari-
able when the explanatory variable (or variables) is equal to 0; the intercept b0 is
shown on the vertical axis in Figure 5. Similarly, the slope of the line measures
the (average) change in the dependent variable associated with a unit increase in
an explanatory variable; the slope b1 also is shown. In equation (4), the intercept
$15,000 indicates that employees with no experience earn $15,000 per year. The
slope parameter implies that each year of experience adds $2,000 to an “average”
employee’s salary.

Figure 5
Goodness-of-Fit
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Now, suppose that the salary variable is related simply to the sex of the em-
ployee. The relevant indicator variable, often called a dummy variable , is X2,
which is equal to 1 if the employee is male, and 0 if the employee is female.
Suppose the regression of salary Y on X2 yields the following result:

    Ŷ = $30, 449 + $10,979 X 2
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The coefficient $10,979 measures the difference between the average salary of
men and the average salary of women.60

1. Regression Residuals

For each data point, the regression residual  is the difference between the actual
and fitted values of the dependent variable. Suppose, for example, that we are
studying an individual with three years of experience and a salary of $27,000.
According to the regression line in Figure 5, the average salary of an individual
with three years of experience is $21,000. Since the individual’s salary is $6,000
higher than the average salary, the residual (the individual’s salary minus the av-
erage salary) is $6,000.

In general, the residual e associated with a data point, such as Point A in
Figure 5, is given by:

    e = Yi − Ŷ i

Each data point in the figure has a residual, which is the error made by the least-
squares regression method for that individual.

2. Nonlinearities

Nonlinear models account for the possibility that the effect of an explanatory
variable on the dependent variable may vary in magnitude as the level of the ex-
planatory variable changes. One useful nonlinear model uses interactions
among variables to produce this effect. For example, suppose that

    S = β1 + β2 SEX + β3EXP + β4 (EXP × SEX ) + ε (5)

where S is annual salary, SEX is equal to 1 for women and 0 for men, EXP rep -
resents years of job experience, and ε is a random error term. The coefficient β2
measures the difference in average salary (across all experience levels) between
men and women for employees with no experience. The coefficient β3 measures
the effect of experience on salary for men (when SEX = 0), and the coefficient
β4 measures the difference in the effect of experience on salary between men
and women. It follows, for example, that the effect of one year of experience on
salary for men is β3, while the comparable effect for women is β3 + β4.61

60. To understand why, note that when X2 equals 0, the average salary for women is

  $30,449 + $10,979 × 0 = $30,449
Correspondingly, when X2 equals 1, the average salary for men is

  $30,449 + $10,979 × 1 = $41,428
The difference, $41,428 – $30,449, is $10,979.

61. Estimating a regression in which there are interaction terms for all explanatory variables, as in equation
(5), is essentially the same as estimating two separate regressions, one for men and one for women.
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III. Interpreting Regression Results
To understand how regression results are interpreted, the earlier example associ -
ated with Figure 5 can be expanded to consider the possibility of an additional
explanatory variable—the square of the number of years of experience, X3. The
X3 variable is designed to capture the fact that for most individuals, salaries in-
crease with experience, but eventually salaries tend to level off. The estimated
regression line using the third additional explanatory variable, as well as the first
explanatory variable for years of experience (X 1) and the dummy variable for sex
(X2), is

    Ŷ = $14,085 + $2,323 X1 + $1,675 X 2 − $36 X 3 (6)

The importance of including relevant explanatory variables in a regression
model is illustrated by the change in the regression results after the X3 and X2
variables are added. The coefficient on the variable X2  measures the difference
in the salaries of men and women while holding the effect of experience con-
stant. The differential of $1,675 is substantially lower than the previously mea-
sured differential of $10,979. Clearly, failure to control for job experience in this
example leads to an overstatement of the difference in salaries between men and
women.

Now consider the interpretation of the explanatory variables for experience,
X1 and X3. The positive sign on the X 1coefficient shows that salary increases with
experience. The negative sign on the X 3 coefficient indicates that the rate of
salary increase decreases with experience. To see the combined effect of the
variables X 1 and X 3, some simple calculations can be made. For example, con-
sider how the average salary of women (X2 = 0) changes with the level of experi-
ence. As experience increases from 0 to 1 year, the average salary increases by
$2,251, from $14,085 to $16,336. However, women with 2 years of experience
earn only $2,179 more than women with 1 year of experience, and women with
3 years of experience earn only $2,127 more than women with 2 years. Further,
women with 7 years of experience earn $28,582 per year, which is only $1,855
more than the $26,727 earned by women with 6 years of experience.62 Figure 6
illustrates the results; the regression line shown is for women’s salaries; the corre-
sponding line for men’s salaries would be parallel and $1,675 higher.

62. These numbers can be calculated by substituting different values of X1 and X3 in equation (6).
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Figure 6
Regression Slope
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IV. Determining the Precision of the Regression Results
Least-squares regression provides not only parameter estimates that indicate the
direction and magnitude of the effect of a change in the explanatory variable on
the dependent variable, but also an estimate of the reliability of the parameter
estimates and a measure of the overall goodness-of-fit of the regression model.
Each of these factors is considered in turn.

A. Standard Errors of the Coefficients and t-Statistics

Estimates of the true but unknown parameters of a regression model are num-
bers that depend on the particular sample of observations under study. If a dif-
ferent sample were used, a different estimate would be calculated.63 If the expert
continued to collect more and more samples and generated additional estimates,
as might happen when new data became available over time, the estimates of
each parameter would follow a probability distribution  (i.e., the expert could
determine the percentage or frequency of the time that each estimate occurs).
This probability distribution can be summarized by a mean and a measure of

63. The least-squares formula that generates the estimates is called the least-squares estimator, and its val -
ues vary from sample to sample.
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dispersion around the mean, a standard deviation,  that usually is referred to as
the standard error of the coefficient , or the standard error .64

Suppose, for example, that an expert is interested in estimating the average
price paid for a gallon of unleaded gasoline by consumers in a particular geo-
graphic area of the United States at a particular point in time. The mean price
for a sample of ten gas stations might be $1.25, while the mean for another sam-
ple might be $1.29, and the mean for a third, $1.21. On this basis, the expert
also could calculate the overall mean price of gasoline to be $1.25 and the stan-
dard deviation to be $0.04.

Least-squares regression generalizes this result, by calculating means whose
values depend on one or more explanatory variables. The standard error of a re-
gression coefficient tells the expert how much the parameter estimate is likely to
vary from sample to sample. The greater the variation in parameter estimates
from sample to sample, the larger the standard error and consequently the less
reliable the regression results. Small standard errors imply results that are likely
to be similar from sample to sample, while results with large standard errors
show more variability.

Under appropriate assumptions, the least-squares estimators  provide “best” de-
terminations of the true underlying parameters.65 In fact, least-squares has sev-
eral desirable properties. First, least-squares estimators are unbiased. Intuitively,
this means that if the regression were calculated over and over again with differ-
ent samples, the average of the many estimates obtained for each coefficient
would be the true parameter. Second, least-squares estimators are consistent ; if
the sample were very large, the estimates obtained would come close to the true
parameters. Third, least-squares is efficient,  in that its estimators have the small-
est variance among all (linear) unbiased estimators.

If the further assumption is made that the probability distribution of each of
the error terms is known, statistical statements can be made about the precision
of the coefficient estimates. For relatively large samples (often, thirty or more
data points will be sufficient for regressions with a small number of explanatory
variables), the probability that the estimate of a parameter lies within an interval
of 2 standard errors around the true parameter is approximately .95, or 95%. A
frequent, although not always appropriate, assumption in statistical work is that
the error term follows a normal distribution, from which it follows that the esti -
mated parameters are normally distributed. The normal distribution has the
property that the area within 1.96 standard errors of the mean is equal to 95% of
the total area. Note that the normality assumption is not necessary for least -

64. See  David H. Kaye & David A. Freedman, Reference Guide on Statistics § IV.A, in this manual.
65. The necessary assumptions of the regression model include (a) the model is specified correctly; (b) er -

rors associated with each observation are drawn randomly from the same probability distribution and are inde -
pendent of each other; (c) errors associated with each observation are independent of the corresponding obser -
vations for each of the explanatory variables in the model; and (d) no explanatory variable is correlated per -
fectly with a combination of other variables.
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squares to be used, since most of the properties of least-squares apply regardless
of normality.

In general, for any parameter estimate b, the expert can construct an interval
around b such that there is a 95% probability that the interval covers the true pa -
rameter. This 95% confidence interval 66 is given by:

    b ± 1.96 × ( standard error of b ) 67 (7)

The expert can test the hypothesis that a parameter is actually equal to 0—often
stated as testing the null hypothesis—by looking at its t-statistic, which is defined
as:

    
t =

b
standard error of b

(8)

If the t-statistic is less than 1.96 in magnitude, the 95% confidence interval
around b must include 0.68 Because this means that the expert cannot reject the
hypothesis that β equals 0, the estimate, whatever it may be, is said to be not
statistically significant. Conversely, if the t-statistic is greater than 1.96 in abso-
lute value, the expert concludes that the true value of β is unlikely to be 0
(intuitively, b is “too far” from 0 to be consistent with the true value of β being
0). In this case, the expert rejects the hypothesis that β equals 0 and calls the es -
timate statistically significant. If the null hypothesis β equals 0 is true, using a
95% confidence level will cause the expert to falsely reject the null hypothesis
5% of the time. Consequently, results often are said to be significant at the 5%
level. 69

As an example, consider a more complete set of regression results associated
with the salary regression described in equation (6):

    

Ŷ = $14,085 + $2,323 X1 + $1,675 X 2 − $36 X 3

(1,577) (140) (1, 435) (3.4)
t = 8.9 16.5 1.2 −10.8

(9)

The standard error of each estimated parameter is given in parentheses directly
below the parameter, and the corresponding t-statistics appear below the stan-
dard error values.

Consider the coefficient on the dummy variable X2. It indicates that $1,675 is
the best estimate of the mean salary difference between men and women.

66. Confidence intervals are used commonly in statistical analyses because the expert can never be certain
that a parameter estimate is equal to the true population parameter.

67. If the number of data points in the sample is small, the standard error must be multiplied by a number
larger than 1.96.

68. The t-statistic applies to any sample size. As the sample gets large, the underlying distribution, which is
the source of the t -statistic (the student’s t distribution), approximates the normal distribution.

69. A t-statistic of 2.57 in magnitude or greater is associated with a 99% confidence level, or a 1% level of
significance, that includes a band of 2.57 standard deviations on either side of the estimated coefficient.
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However, the standard error of $1,435 is large in relation to its coefficient
$1,675. Because the standard error is relatively large, the range of possible values
for measuring the true salary difference, the true parameter, is great. In fact, a
95% confidence interval is given by:

  $1,675 ± $1, 435 × 1.96 = $1,675 ± $2, 813

In other words, the expert can have 95% confidence that the true value of the
coefficient lies between –$1,138 and $4,488. Because this range includes 0, the
effect of sex on salary is said to be insignificantly different from 0 at the 5% level.
The t value of 1.2 is equal to $1,675 divided by $1,435. Because this t-statistic is
less than 1.96 in magnitude (a condition equivalent to the inclusion of a 0 in the
above confidence interval), the sex variable again is said to be an insignificant
determinant of salary at the 5% level of significance.

Note also that experience is a highly significant determinant of salary, since
both the X1 and the X3 variables have t-statistics substantially greater than 1.96 in
magnitude. More experience has a significant positive effect on salary, but the
size of this effect diminishes significantly with experience.

B. Goodness-of-Fit

Reported regression results usually contain not only the point estimates of the
parameters and their standard errors or t-statistics, but also other information that
tells how closely the regression line fits the data. One statistic, the standard error
of the regression (SER), is an estimate of the overall size of the regression residu-
als.70 An SER of 0 would occur only when all data points lie exactly on the re-
gression line—an extremely unlikely possibility. Other things being equal, the
larger the SER, the poorer the fit of the data to the model.

For a normally distributed error term, the expert would expect approximately
95% of the data points to lie within 2 SERs of the estimated regression line, as
shown in Figure 7 (in Figure 7 the SER is approximately $5,000).

R-square  (R2) is a statistic that measures the percentage of variation in the de-
pendent variable that is accounted for by all the explanatory variables.71 Thus, R2

provides a measure of the overall goodness-of-fit of the multiple regression
equation.72 Its value ranges from 0 to 1. An R2 of 0 means that the explanatory
variables explain none of the variation of the dependent variable; an R2 of 1
means that the explanatory variables explain the variation in the dependent vari-
able perfectly. The R2  associated with equation (9) is .56. This implies that the
three explanatory variables explain 56% of the variation in salaries.

70. More specifically, it is a measure of the standard deviation of the regression error e. It sometimes is
called the root mean square error of the regression line.

71. The variation is the square of the difference between each Y value and the average Y value, summed
over all the Y values.

72. R 2 and SER provide similar information, because R 2 is approximately equal to 1 – SER 2/Variance of Y.
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Figure 7
Standard Error of the Regression
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What level of R2, if any, should lead to a conclusion that the model is satisfac -
tory? Unfortunately, there is no clear-cut answer to this question, since the mag-
nitude of R 2 depends on the characteristics of the data series being studied and,
in particular, whether the data vary over time or over individuals. Typically, an
R2 is low in cross-sectional studies in which differences in individual behavior
are explained. It is likely that these individual differences are caused by many
factors that cannot be measured. As a result, the expert cannot hope to explain
most of the variation. In time-series studies, in contrast, the expert is explaining
the movement of aggregates over time. Since most aggregate time series have
substantial growth, or trend, in common, it will not be difficult to “explain” one
time series using another time series, simply because both are moving together.
It follows as a corollary that a high R2 does not by itself mean that the variables
included in the model are the appropriate ones.

As a general rule, courts should be reluctant to rely solely on a statistic such as
R2 to choose one model over another. Alternative procedures and tests are avail-
able.73

73. These include F-tests and specification error tests. See Pindyck & Rubinfeld, supra  note 28, at 107–13,
149–55, 224–28.
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C. Sensitivity of Least-Squares Regression Results

The least-squares regression line can be sensitive to extreme data points. This
sensitivity can be seen most easily in Figure 8. Assume initially that there are
only three data points, A, B, and C, relating information about X1 to the variable
Y. The least-squares line describing the best-fitting relationship between Points
A, B, and C is represented by Line 1. Point D is called an outlier  because it lies
far from the regression line that fits the remaining points. When a new, best-fit-
ting least-squares line is reestimated to include Point D, Line 2 is obtained.
Figure 8 shows that the outlier Point D is an influential data point, since it has a
dominant effect on the slope and intercept of the least-squares line. Because
least squares attempts to minimize the sum of squared deviations, the sensitivity
of the line to individual points sometimes can be substantial. 74

Figure 8
Least-Squares Regression
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What makes the influential data problem even more difficult is that the effect
of an outlier may not be seen readily if deviations are measured from the final
regression line. The reason is that the influence of Point D on Line 2 is so sub-
stantial that its deviation from the regression line is not necessarily larger than
the deviation of any of the remaining points from the regression line. 75 Although

74. This sensitivity is not always undesirable. In some cases it may be much more important to predict
Point D when a big change occurs than to measure the effects of small changes accurately.

75. The importance of an outlier also depends on its location in the data set. Outliers associated with rela -
tively extreme values of explanatory variables are likely to be especially influential.
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they are not as popular as least-squares, alternative estimation techniques that
are less sensitive to outliers, such as robust estimation, are available.

V. Reading Multiple Regression Computer Output
Statistical computer packages that report multiple regression analyses vary to
some extent in the information they provide and the form that the information
takes. The following table contains a sample of the basic computer output that is
associated with equation (6).

Table 1
Regression Output

Dependent Variable: Y SSE 62346266124 F- Test 174.71

DFE 561 Prob > F 0.0001

MSE 111134164 R2 0.5560

Variable DF Parameter Estimate
Standard

Error t-stat Prob > | t|

Intercept 1 14084.89 1577.484 8.9287 .0001

X1 1 1675.11 1435.422 1.1670 .2437

X2 1 2323.17 140.70 16.5115 .0001

X3 1 -36.71 3.41 -10.7573 .0001

Note:  SSE = sum of squared errors; DFE = degrees of freedom associated with the error term; MSE = mean
square error; DF = degrees of freedom; t-stat = t-statistic; Prob = probability.

Beginning with the lower portion of Table 1, note that the parameter esti-
mates, the standard errors, and the t-statistics match the values given in equation
(9). 76 The variable “Intercept” refers to the constant term β0 in the regression.
The column DF represents degrees of freedom . The “1” signifies that when the
computer calculates the parameter estimates, each variable that is added to the
linear regression adds an additional constraint that must be satisfied. The col-
umn labeled “Prob > | t |” lists the two-tailed p-values associated with each esti-
mated parameter; the p-value measures the observed significance level—the
probability of getting a test statistic as extreme or more extreme than the ob-
served number if the model parameter is in fact 0. The very low p-values on the
variables X2 and X3 imply that each variable is statistically significant at less than
the 1% level—both highly significant results. On the contrary, the X 1 coefficient
is only significant at the 24% level, implying that it is insignificant at the tradi-
tional 5% level. Thus, the expert cannot reject with confidence the null hypoth-

76. Computer programs give results to more decimal places than are meaningful. This added detail should
not be seen as evidence that the regression results are exact.
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esis that salaries do not differ by sex after the expert has accounted for the effect
of experience.

The top portion of Table 1 provides data that relate to the goodness-of-fit of
the regression equation. The sum of squared errors  (SSE) measures the sum of
the squares of the regression residuals—the sum that is minimized by the least-
squares procedure. The degrees of freedom associated with the error term
(DFE) is given by the number of observations minus the number of parameters
that were estimated. The mean square error  (MSE) measures the variance of the
error term (the square of the standard error of the regression). MSE is equal to
SSE divided by DFE.

The R2 of .556 indicates that 55.6% of the variation in salaries is explained by
the regression variables, X1, X2, and X3. Finally, the F-test is a test of the null hy -
pothesis that all regression coefficients (except the intercept) are jointly equal to
0—that there is no association between the dependent variable and any of the
explanatory variables. This is equivalent to the null hypothesis that R 2 is equal to
0. In this case, the F-ratio of 174.71 is sufficiently high that the expert can reject
the null hypothesis with a very high degree of confidence (i.e., with a 1% level of
significance).

VI. Forecasting
In general, a forecast is a prediction made about the values of the dependent
variable using information about the explanatory variables. Often, ex ante fore -
casts are performed; in this situation, values of the dependent variable are pre-
dicted beyond the sample (e.g., beyond the time period in which the model has
been estimated). However, ex post  forecasts  are frequently used in damage analy-
ses.77 An ex post forecast has a forecast period such that all values of the depen-
dent and explanatory variables are known; ex post forecasts can be checked
against existing data and provide a direct means of evaluation.

For example, to calculate the forecast for the salary regression discussed
above, the expert uses the estimated salary equation:

    Ŷ = $14,085 + $2,323 X1 + $1,675 X 2 − $36 X 3 (10)

To predict the salary of a man with two years experience, the expert calculates:

    Ŷ (2) = $14,085 + $2,323 × 2 + $1,675 − $36 × 22 = $20,262 (11)

77. Frequently, in cases involving damages, the question arises as to what the world would have been like
had a certain event not taken place. For example, in a price-fixing antitrust case, the expert can ask what the
price of a product would have been had a certain event associated with the price-fixing agreement not oc -
curred. If prices would have been lower, the evidence suggests impact. If the expert can predict how much
lower they would have been, the data can help the expert develop a numerical estimate of the amount of dam -
ages.
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The degree of accuracy of both ex ante and ex post forecasts can be calculated
provided that the model specification is correct and the errors are normally dis-
tributed and independent. The statistic is known as the standard error of forecast
(SEF). The SEF measures the standard deviation of the forecast error that is
made within a sample in which the explanatory variables are known with cer-
tainty.78 The SEF can be used to determine how accurate a given forecast is. In
equation (11), the SEF associated with the forecast of $20,262 is approximately
$5,000. If a large sample size is used, the probability is roughly 95% that the
predicted salary will be within 1.96 standard errors of the forecasted value. In
this case, the appropriate 95% interval for the prediction is
  $20,262 ± $5,000 × 1.96  ($10,822 to $30,422). Because the estimated model
does not explain salaries effectively, the SEF is large, as is the 95% interval. A
more complete model with additional explanatory variables would result in a
lower SEF and a smaller 95% interval for the prediction.

There is a danger when using the SEF, which applies to the standard errors of
the estimated coefficients as well. The SEF is calculated on the assumption that
the model includes the correct set of explanatory variables and the correct func-
tional form. If the choice of variables or the functional form is wrong, the esti-
mated forecast error may be misleading; in some cases, it may be smaller, per-
haps substantially smaller, than the true SEF; in other cases, it may be larger, for
example, if the wrong variables happen to capture the effects of the correct vari -
ables.

78. There are actually two sources of error implicit in the SEF. The first source arises because the esti -
mated parameters of the regression model may not be exactly equal to the true regression parameters. The sec-
ond source is the error term itself; when forecasting, the expert typically sets the error equal to 0 when a turn of
events not taken into account in the regression model may make it appropriate to make the error positive or
negative.



462 Reference Manual on Scientific Evidence

Figure 9
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The difference between the SEF and the SER is shown in Figure 9. The SER
measures deviations within the sample. The SEF is more general, since it calcu-
lates deviations within or without the sample period. In general, the difference
between the SEF and the SER increases as the values of the explanatory vari -
ables increase in distance from the mean values. Figure 9 shows the 95% predic-
tion interval created by the measurement of 2 SEFs about the regression line.
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Glossary of Terms

The following terms and definitions are adapted from a variety of sources, in-
cluding A Dictionary of Epidemiology (John M. Last ed., 1983) and Robert S.
Pindyck & Daniel L. Rubinfeld, Econometric Models & Economic Forecasts
(3d ed. 1991).

Alternative Hypothesis.  See Hypothesis Test.

Association.  The degree of statistical dependence between two or more events or
variables. Events are said to be associated when they occur more frequently
together than one would expect by chance.

Bias. Any effect at any stage of investigation or inference tending to produce re-
sults that depart systematically (either too high or too low) from the true val-
ues. A biased estimator of a parameter differs on average from the true pa-
rameter.

Coefficient.  An estimated regression parameter.

Confidence  Interval.  An interval that contains a true regression parameter with a
given degree of confidence.

Consistent Estimator.  An estimator that tends to become more and more accu-
rate as the sample size grows.

Correlation. A statistical means of measuring the association between variables.
Two variables are correlated positively if, on average, they move in the same
direction; two variables are correlated negatively if, on average, they move in
opposite directions.

Cross-Section Analysis.  A type of multiple regression analysis in which each data
point is associated with a different unit of observation (e.g., an individual or
a firm) measured at a particular point in time.

Degrees of Freedom. The number of observations in a sample minus the number
of estimated parameters in a regression model. A useful statistic in hypothe-
sis testing.

Dependent Variable. The variable to be explained or predicted in a multiple re-
gression model.
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Dummy Variable.  A variable that takes on only two values, usually 0 and 1, with
one value indicating the presence of a characteristic, attribute, or effect and
the other value indicating absence.

Efficient Estimator.  An estimator of a parameter that produces the greatest preci -
sion possible.

Error Term.  A variable in a multiple regression model that represents the cumu-
lative effect of a number of sources of modeling error.

Estimate.  The calculated value of a parameter based on the use of a particular
sample.

Estimator.  The sample statistic that estimates the value of a population parame-
ter (e.g., a regression parameter); its values vary from sample to sample.

Ex Ante Forecast.  A prediction about the values of the dependent variable that
go beyond the sample; consequently, the forecast must be based on predic-
tions for the values of the explanatory variables in the regression model.

Explanatory Variable. A variable that partially explains or predicts the movement
of a dependent variable.

Ex Post Forecast.  A prediction about the values of the dependent variable made
during a period in which all the values of the explanatory and dependent
variables are known. Ex post  forecasts provide a useful means of evaluating
the fit of a regression model.

F-test. A statistical test (based on an F-ratio) of the null hypothesis that a group of
explanatory variables are jointly equal to 0. When applied to all the explana -
tory variables in a multiple regression model, the F -test becomes a test of the
null hypothesis that R2 equals 0.

Feedback. When changes in an explanatory variable affect the values of the de -
pendent variable, and changes in the dependent variable also affect the ex-
planatory variable. When both effects occur at the same time, the two vari-
ables are described as being determined simultaneously.

Fitted Value.  The estimated value for the dependent variable; in a linear regres-
sion this value is calculated as the intercept plus a weighted average of the
values of the explanatory variables, with the estimated parameters used as
weights.

Heteroscedasticity.  When the disturbance or error associated with a multiple re-
gression model has a nonconstant variance; that is, the error values associ-
ated with some observations are typically high, whereas the values associated
with other observations are typically low.

Hypothesis Test. A statement about the parameters in a multiple regression
model. The null hypothesis may assert that certain parameters have speci-
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fied values or ranges; the alternative hypothesis would specify other values or
ranges.

Independence.  When two variables are not correlated with each other (in the
population).

Independent Variable.  An explanatory variable that affects the dependent vari-
able but is not affected by the dependent variable.

Influential Data Point. A data point whose addition to a regression sample
causes one or more estimated regression parameters to change substantially.

Interaction Variable.  The product of two explanatory variables in a regression
model. Used in a particular form of nonlinear model.

Intercept. The value of the dependent variable when each of the explanatory
variables takes on the value of 0.

Least-Squares.  A common method for estimating regression parameters. Least-
squares minimizes the sum of the squared differences between the actual
values of the dependent variable and the values predicted by the regression
equation.

Linear Model. A model having the property that the magnitude of the change in
the dependent variable associated with the change in any of the explanatory
variables is the same no matter what the level of that variable.

Linear Regression.  A regression model in which the effect of a change in each of
the explanatory variables on the dependent variable is the same, no matter
what the values of those explanatory variables.

Mean (Sample).  An average of the outcomes associated with a probability distri -
bution, where the outcomes are weighted by the probability that each will
occur.

Mean Square Error (MSE).  The estimated variance of the regression error, cal-
culated as the average of the sum of the squares of the regression residuals.

Model. A representation of an actual situation.

Multicollinearity.  Arises in multiple regression analysis when two or more vari-
ables are highly correlated. Substantial multicollinearity can cause regres-
sion parameters to be estimated imprecisely, as reflected in relatively high
standard errors.

Multiple Regression Analysis. A statistical tool for understanding the relationship
between two or more variables.

Multivariate Analysis. A set of techniques used to study the variation in several
variables simultaneously.
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Nonlinear Model.  A model having the property that changes in explanatory vari-
ables will have differential effects on the dependent variable as the values of
the explanatory variables change.

Normal Distribution.  A bell-shaped probability distribution having the property
that about 95% of the distribution lies within two standard deviations of the
mean.

Null Hypothesis.  In regression analysis the null hypothesis states that the results
observed in a study with respect to a particular variable are no different from
what might have occurred by chance, independent of the effect of that vari-
able. See Hypothesis Test.

One-Tailed Test.  A hypothesis test in which the alternative to the null hypothesis
that a parameter is equal to 0 is for the parameter to be either positive or
negative, but not both.

Outlier.  A data point that is more than some appropriate distance from a regres-
sion line that is estimated using all the other data points in the sample.

p-Value.  The probability of getting a test statistic as extreme or more extreme
than the observed value. The larger the p-value, the more likely the null hy-
pothesis is true.

Parameter.  A numerical characteristic of a population or a model.

Perfect Collinearity. When two (or more) variables are explanatory variables are
correlated perfectly.

Population.  All the units of interest to the researcher; also, universe.

Practical Significance.  Substantive importance. Statistical significance does not
ensure practical significance, since, with large samples, small differences
can be statistically significant.

Probability Distribution. The process that generates the values of a random vari -
able. A probability distribution lists all possible outcomes and the probability
that each will occur.

Probability Sampling.  A process by which a sample of a population is chosen so
that each observation has a known probability of being selected.

Random.  Governed by chance; not completely determined by other factors.

Random Error. Random error (sampling error) is due to chance when the result
obtained in the sample differs from the result that would be obtained if the
entire population were studied.

Regression Coefficient. The estimate of a population parameter obtained from a
regression equation that is based on a particular sample; also, regression pa-
rameter.
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Residual.  The difference between the actual value of a dependent variable and
the value predicted by the regression equation.

Robust. A statistic or procedure that does not change much when data or as -
sumptions are slightly modified.

Robust Estimation.  An alternative to least-squares estimation that is less sensitive
to outliers.

R-Square ( R2). A statistic that measures the percentage of the variation in the de-
pendent variable that is accounted for by all of the explanatory variables in a
regression model. R-square is the most commonly used measure of good-
ness-of-fit of a regression model.

Sample.  A set of units selected for a study; a subset of a population.

Sampling Error.  A measure of the difference between the sample estimate of a
parameter and the population parameter.

Scatterplot.  A graph showing the relationship between two variables in a study;
each dot represents one subject. One variable is plotted along the horizontal
axis; the other variable is plotted along the vertical axis.

Serial Correlation.  The correlation of the values of regression errors over time.

Slope.  The change in the dependent variable associated with a 1-unit change in
an explanatory variable.

Spurious Correlation. When two variables are correlated, but one is not the
cause of the other.

Standard Deviation.  The square root of the variance of a random variable. The
variance is a measure of the spread of a probability distribution about its
mean; it is calculated as a weighted average of the squares of the deviations
of the outcomes of a random variable from its mean.

Standard Error of the Coefficient; Standard Error. A measure of the variation of a
parameter estimate or coefficient about the true parameter. The standard er-
ror is a standard deviation that is calculated from the probability distribution
of estimated parameters.

Standard Error of Forecast (SEF).  An estimate of the standard deviation of the
forecast error; it is based on forecasts made within a sample in which the
values of the explanatory variables are known with certainty.

Standard Error of the Regression (SER). An estimate of the standard deviation of
the regression error; it is calculated as an average of the squares of the resid-
uals associated with a particular multiple regression analysis.

Statistical Significance.  Used to evaluate the degree of association between a de-
pendent variable and one or more explanatory variables. If the calculated p -
value is smaller than 5%, the result is said to be statistically significant (at the
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5% level). If p is less than 5%, the result is statistically insignificant (at the
5% level).

t-Statistic. A test statistic that describes how far an estimate of a parameter is
from its hypothesized value (i.e., given a null hypothesis). If a t-statistic is
sufficiently large (in absolute magnitude), an expert can reject the null hy-
pothesis.

t-Test . A test of the null hypothesis that a regression parameter takes on a
particular value, usually 0. The test is based on the t -statistic.

Time-Series Analysis.  A type of multiple regression analysis in which each data
point is associated with a particular unit of observation (e.g., an individual or
a firm) measured at different points in time.

Two-Tailed Test.  A hypothesis test in which the alternative to the null hypothesis
that a parameter is equal to 0 is for the parameter to be either positive or
negative, or both.

Variable. Any attribute, phenomenon, condition, or event that can have differ-
ent values.

Variable of Interest.  The explanatory variable that is the focal point of a particu-
lar study or legal issue.

Weighting. Weighting is used when statistics such as the mean and standard de-
viation are calculated. If ten observations are equally likely to occur, then
each is weighted 0.1 when the appropriate statistics are calculated. However,
if the first five observations are three times as likely to occur as the second
five, the first five receive weights of 0.15, and the second five receive weights
of 0.05. (In each case the sum of the weights is 1.0.)
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