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|. Introduction

Statistics, broadly defined, is the science and art of gaining information from
data. For statistical purposes, data mean observations or measurements, ex-
pressed as numbers. A statistic may refer to a particular numerical value, derived
from the data. Baseball statistics, for example, is the study of data about the
game; a player’s batting average is a statistic.

The field of statistics includes methods for (1) collecting data, (2) analyzing
data, and (3) drawing inferences from data. This reference guide describes the
underlying ideas of statistics as they relate to legal proceedings. Statistical as-
sessments figure prominently in antitrust, discrimination, fraud, homicide, sex-
ual assault, trademark, toxic tort, and many other kinds of cases.! Typically, the
most difficult arguments about such studies concern their probative value.2

This reference guide focuses on the nature of statistical thinking rather than
on the rules of evidence or substantive legal doctrine. We hope that the explana-
tions provided, although summary and nonmathematical in form, will permit
judges who are confronted with statistical testimony to understand more of the

1. See generally David C. Baldus & James W. L. Cole, Statistical Proof of Discrimination (1980); Statistics
and the Law (Morris H. DeGroot et al. eds., 1986); The Evolving Role of Statistical Assessments as Evidence
in the Courts (Stephen E. Fienberg ed., 1989); Michael O. Finkelstein & Bruce Levin, Statistics for Lawyers
(1990); 1 & 2 Joseph L. Gastwirth, Statistical Reasoning in Law and Public Policy (1988).

2. Statistical studies suitably designed to address a material issue generally will be admissible under the
Federal Rules of Evidence. The hearsay rule rarely is a serious barrier to the presentation of statistical studies.
S Linda A. Bailey et al., Reference Guide on Epidemiology n.1, in this manual. Likewise, since most statisti -
cal methods relied on in court are described in textbooks and journal articles and are capable of producing
useful results when carefully and appropriately applied, the methodology generally satisfies the “scientific
knowledge” requirement articulated in Daubert v. Merrell Dow Pharmaceuticals, Inc., 113 S. Ct. 2786, 2795
(1993). For a discussion of the implications and scope of Daubert generally, see Margaret A. Berger,
Evidentiary Framework 88 I, I11, in this manual; Bert Black et al., Science and the Law in the Wake of Daubert:
A New Search for Scientific Knowledge, 72 Tex. L. Rev. 715 (1994); Richard D. Friedman, The Death and
Transfiguration of Frye , 34 Jurimetrics J. 133 (1994); Susan R. Poulter, Daubert and Scientific Evidence:
Assessing Evidentiary Reliability in Toxic Tort Cases, 1993 Utah L. Rev. 1307; Symposium, Scientific Evidence
After the Death of Frye, 15 Cardozo L. Rev. 1745 (1994). Of course, a particular study may use a method that is
entirely appropriate for some problems, but that is so poorly executed that it should be inadmissible under Fed.
R. Evid. 403 and 702. Or, the method may be inappropriate for the problem at hand and thus lack the “fit”
spoken of in Daubert. 113 S. Ct. at 2796. Or, the study may rest on data of the type not reasonably relied on by
statisticians or substantive experts and hence run afoul of Fed. R. Evid. 703. See, e.g ., Faust F. Rossi, Expert
Witnesses 43-98 (1991); Ronald L. Carlson, Policing the Bases of Modern Expert Testimony , 39 Vand. L. Rev.
577 (1986); Paul R. Rice, Inadmissible Evidence as a Basis for Expert Opinion Testimony: A Response ©
Professor Carlson , 40 Vand. L. Rev. 583 (1987); Michael C. McCarthy, Note, “Helpful” or “Reasonably
Reliable”?: Analyzing the Expert Witness’s Methodology Under Federal Rules of Evidence 702 and 703 , 77
Cornell L. Rev. 350 (1992). More often, however, the battle over statistical evidence concerns weight or suffi-
ciency rather than admissibility.
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terminology, to place the evidence in context, to appreciate its strengths and
weaknesses, and to develop and apply legal doctrine governing the use of statisti-
cal evidence.

The reference guide is organized as follows:

- Section | provides an overview of the field and offers some suggestions
about procedures to encourage the best use of statistical expertise in liti-
gation.

= Section Il addresses data collection. The design of a study is the most
important determinant of its quality. Section Il describes the design of
surveys, controlled experiments, and observational studies. It indicates
when these procedures are likely to produce useful data for various pur-
pOoses.

- Section Il discusses methods for extracting and summarizing the most
important features of data. Descriptive statistics is the art of describing and
summarizing data, and section |1l considers the meaning, useful ness, and
limitations of such descriptive statistics as the mean, median, standard
deviation, correlation coefficient, and slope of a regression line. These are
the basic descriptive statistics, and most statistical analyses seen in court
use them as building blocks.

= Section IV describes the logic of statistical inference, emphasizing its
foundations and limitations. In particular, it explains statistical estimation,
standard errors, confidence intervals, p-values, and hypothesis tests.

A. Varieties and Limits of Statistical Expertise

For convenience, the field of statistics may be divided into three subfields: prob-
ability, theoretical statistics, and applied statistics. Theoretical statistics is the
study of the mathematical properties of statistical procedures; probability theory
plays a key role in this endeavor. Results may be used by applied statisticians
who specialize in particular types of data collection, such as survey research, or
in particular types of analysis, such as multivariate methods.

Statistical expertise is not confined to those with degrees in statistics. Because
statistical reasoning underlies all empirical research, researchers in many fields
are exposed to statistical ideas. Experts with advanced degrees in the physical,
medical, and social sciences and some of the humanities may receive formal
training in statistics. Such specializations as biostatistics, epidemiology, econo-
metrics, and psychometrics are primarily statistical, with an emphasis on meth-
ods and problems most important to the related substantive discipline.

Experience with applied statistics is the best indication of the type of statistical
expertise needed in court. By and large, individuals who think of themselves as
specialists in using statistical methods—and whose professional careers demon-
strate this orientation—are most likely to apply appropriate procedures and cor-
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rectly interpret the results.® At the same time, the choice of which data to exam-
ine or how best to model a particular process may require subject matter exper-
tise that a statistician may lack. Statisticians typically advise experts in substantive
fields on the procedures for collecting data and usually analyze data collected by
others. As a result, cases involving statistical evidence often are (or should be)
“two-expert” cases of interlocking testimony.4 A labor economist, for example,
may supply a definition of the relevant labor market from which an employer
draws its employees, and the statistical expert may contrast the racial makeup of
those hired to the racial composition of the labor market. Naturally, the value of
the statistical analysis depends on the substantive economic knowledge that in-
forms it.

B. Procedures That Enhance Statistical Testimony
1. Maintaining professional autonomy

Ideally, experts who conduct research for litigants should proceed with the same
objectivity that they would apply in other contexts. Thus, if experts testify or if
their results are used in testimony by others, they should be free to do whatever
analysis and have access to whatever data are required to address the problems

3. Forensic scientists and technicians often testify to probabilities or statistics derived from studies or
databases compiled by others, even though some of these experts lack the training or knowledge required to
understand and apply the information. See Andre A. Moenssens, Foreword: Novel Scientific Evidence in
Criminal Cases: Some Words of Caution , 84 J. Crim. L. & Criminology 1, 19 (1993) (“Most forensic experts
who use . . . [probability and] statistics have no idea of how the calculations were made, and are not statisti-
cians themselves.”). We believe that courts should be more discerning in assessing the qualifications of these
experts to opine on matters that they cannot explain adequately. See Paul C. Giannelli, Expert Testimony and
the Confrontation Clause, 22 Cap. U. L. Rev. 45 (1993). State v. Garrison, 585 P.2d 563 (Ariz. 1978), illus -
trates the problem. In a murder prosecution involving bite mark evidence, a dentist was allowed to testify that
“the probability factor of two sets of teeth being identical in a case similar to this is, approximately, eight in one
million,” even though “he was unaware of the formula utilized to arrive at that figure other than that it was
‘computerized.’” Id. at 566, 568.

4. Sometimes a single witness presents both the substantive underpinnings and the statistical analysis.
Ideally, such a witness has extensive expertise in both fields, although less may suffice to qualify the witness
under Fed. R. Evid. 702. In deciding whether a witness who clearly is qualified in one field may testify in are-
lated area, courts should recognize that qualifications in one field do not necessarily imply qualifications in the
other. See, e.g., United States exrel. DiGiacomo v. Franzen, 680 F.2d 515, 516 (7th Cir. 1982) (state criminal -
ist testified not only to her finding matching hairs but also to a study that she vaguely recalled on the probabil -
ity of coincidental matches); Vuyanich v. Republic Nat'l Bank, 505 F. Supp. 224, 286 (N.D. Tex. 1980)
(plaintiffs’ expert “is an impressive expert on statistics, but not on compensation or other personnel practices”),
modified in part , 521 F. Supp. 656 (N.D. Tex. 1981), vacated, 723 F.2d 1195 (5th Cir.), cert. denied , 469 U.S.
1073 (1984).

5. In Vuyanich, 505 F. Supp. at 319, defendant’s statistical expert criticized the plaintiffs’ statistical model
for an implicit, but restrictive, assumption about male and female salaries. The district court accepted the
model because the plaintiffs’ expert had a “very strong guess” about the assumption, and her expertise included
labor economics as well as statistics. Id. It is doubtful, however, that economic knowledge sheds much light on
the assumption, and it would have been simple to perform a less restrictive analysis. In this case, the court may
have been overly impressed with a single expert who combined substantive and statistical expertise. Once the
issue is defined by legal and substantive knowledge, some aspects of the statistical analysis will turn on statisti-
cal considerations alone, and expertise in another subject will not be pertinent.
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the litigation poses in a professionally responsible fashion.8 Questions about the
freedom of inquiry accorded to testifying experts and the scope and depth of ex-
perts’ investigations may reveal the experts’ approach to acquiring and extracting
relevant information.

2. Disclosing other analyses

Statisticians may analyze data using a variety of statistical models and methods.
There is nothing underhanded in, and much to be said for, looking at the data
in a variety of ways. To permit a fair evaluation of the analysis that the statistician
may settle on, however, the testifying expert should explain the history behind
the development of the final statistical approach.”

3. Disclosing data and analytical methods before trial

The collection of data often is expensive, and data sets typically contain at least
some minor errors or omissions. Careful exploration of alternative modes of
analysis also can be expensive and time-consuming. To minimize the occur-
rence of distracting debates at trial over the accuracy of data and the choice of
analytical techniques, and to permit informed expert discussions of method, pre-
trial procedures should be used, particularly with respect to the accuracy and
scope of the data, and to discover the methods of analysis. 8 Suggested proce-
dures along these lines are available elsewhere.®

6. See The Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 164
(recommending that the expert be free to consult with colleagues who have not been retained by any party to
the litigation and that the expert receive a letter of engagement providing for these and other safeguards).

7. See, e.g ., Mikel Aickin, Issues and Methods in Discrimination Statistics, in Statistical Methods in
Discrimination Litigation 159 (David H. Kaye & Mikel Aickin eds., 1986). Some commentators have urged
that counsel who know of other data samples or analyses that do not support the client’s position should reveal
this fact to the court rather than attempt to mislead the court by presenting only favorable results. The Evolving
Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 167; ¢. William W Schwarzer, In
Defense of “Automatic Disclosure in Discovery,” 27 Ga. L. Rev. 655, 658-59 (1993) (“[T]he lawyer owes a duty
to the court to make disclosure of core information.”). The Panel on Statistical Assessments as Evidence in the
Courts also recommends that “if a party gives statistical data to different experts for competing analyses, that
fact be disclosed to the testifying expert, if any.” The Evolving Role of Statistical Assessments as Evidence in
the Courts, supra note 1, at 167. Whether and under what circumstances a particular statistical analysis might
be so imbued with counsel’s thoughts and theories of the case that it should receive protection as the attorney’s
work product is an issue beyond the scope of this reference guide.

8.See Fed. R. Civ. P. 16(c), 26(a)(2)(B) (Supp. 1993); Black et al., supra note 2, at 791. We also think that
a pretrial procedure used in England deserves consideration. In most cases, Order 38, Rule 37, like Fed. R.
Civ. P. 26(a)(2)(B), demands that an expert produce a written report before trial. Evidence Rules, S.I. 1989,
No. 2427, reprinted in The Supreme Court Practice 83 (6th Cum. Supp. 1988). But Order 38, Rule 38 goes
beyond the Federal Rules in explicitly authorizing the judge to require the experts to participate in the pretrial
identification of disputed issues. Evidence Rules, S.I. 1987, No. 1423, reprinted in The Supreme Court
Practice, supra at 83-84. This rule allows the court to

direct that there be a meeting “without prejudice” of such experts . . . for the purpose of
identifying those parts of their evidence which are in issue. Where such a meeting takes
place the experts may prepare a joint statement indicating those parts of their evidence
on which they are, and those on which they are not, in agreement. Id.

9. See The Special Comm. on Empirical Data in Legal Decision Making, Recommendations on Pretrial
Proceedings in Cases with Voluminous Data, reprinted in The Evolving Role of Statistical Assessments as
Evidence in the Courts, supra note 1, app. F. When the parties are alerted before trial to the criticisms of their
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4. Presenting expert statistical testimony

The most common format for the presentation of evidence at trial is sequential.
The plaintiff's witnesses are called first, one by one, without interruption except
for cross-examination, and testimony is in response to specific questions rather
than by an extended narration. Although traditional, this structure is not com-
pelled by the Federal Rules of Evidence.1® Some alternatives have been pro-
posed that might be more effective in cases involving substantial statistical testi-
mony. For example, when the reports of witnesses go together, the judge might
allow their presentations to be combined and the witnesses to be questioned as a
panel rather than sequentially. More narrative testimony might be allowed, and
the expert might be permitted to give a brief tutorial on statistics as a preliminary
to some testimony. Instead of allowing the parties to present their experts in the
midst of all the other evidence, the judge might call for the experts for opposing
sides to testify at about the same time. Some courts, particularly in bench trials,
may have both experts placed under oath and, in effect, permit them to engage
in a dialogue. In such a format, experts are able to say whether they agree or dis-
agree on specific issues. The judge and counsel can interject questions. Such
practices may improve the judge’s understanding and reduce the tensions asso-
ciated with the experts’ adversarial role.1

data or analyses, it may be possible to determine whether the putative problems have much effect on the
results. Eg., David H. Kaye, Improving Legal Statistics, 24 Law & Soc’y Rev. 1255 (1990).

10. See Fed. R. Evid. 611.

11. The Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 174.
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II. How Have the Data Been Collected?

An analysis is only as good as the data on which it rests. Along with an examina-
tion of the statistical analysis, therefore, it is important to verify the quality of the
data collection2 and to identify its limitations.

A. Individual Measurements
1. Is the measurement process reliable?

In science, reliability refers to reproducibility of results.13 A reliable measuring
instrument returns consistent measurements of the same quantity. A scale, for
example, is reliable if it reports the same weight for the same object time and
again. It may not be accurate—it may always report a weight that is too high or
one that is too low—Dbut the perfectly reliable scale always reports the same
weight for the same object. Its errors, if any, are systematic; they always point in
the same direction.

Reliability can be ascertained by repeatedly measuring the same quantity.
The predominant method of DNA identification, for instance, requires laborato-
ries to determine the molecular weight of fragments of DNA. By making dupli-
cate measurements of the same fragments, laboratories can determine the likeli-
hood that two measurements of the same fragment will differ by a specified
amount. 14 Ascertaining the usual range of such random error is essential in de-
ciding whether an observed discrepancy between a crime sample and a suspect’s

12. For introductory treatments of data collection, see, eg., Stephen K. Campbell, Flaws and Fallacies in
Statistical Thinking (1974); David Freedman et al., Statistics (2d ed. 1991); Darrell Huff, How to Lie with
Statistics (1954); Jeffrey Katzer et al., Evaluating Information: A Guide for Users of Social Science Research
(2d ed. 1982); David S. Moore, Statistics: Concepts and Controversies (2d ed. 1985); Robert S. Reichard, The
Figure Finaglers (1974); Richard P. Runyon, Winning with Statistics: A Painless First Look at Numbers,
Ratios, Percentages, Means, and Inference (1977); Hans Zeisel, Say It with Figures (6th ed. 1985).

13. Courts often use reliable to mean “that which can be relied on” for some purpose, such as establishing
probable cause or crediting a hearsay statement when the declarant is not produced for confrontation. Daubert
v. Merrell Dow Pharmaceuticals, Inc., 113 S. Ct. 2786, 2795 n.9 (1993), for instance, distinguishes
“evidentiary reliability,” or “trustworthiness,” from “scientific reliability,” or “consistent results.” Here, we use
the term in the latter sense to clarify the many components of ultimate trustworthiness.

14. See, e.g ., B. Budowle et al., Fixed-Bin Analysis for Statistical Evaluation of Continuous Distributions of
Allelic Data from VNTR Loci, for Use in Forensic Comparisons, 48 Am. J. Hum. Genet. 841 (1991); B. S. Weir
& B. S. Gaut, Matching and Binning DNA Fragments in Forensic Science , 34 Jurimetrics J. 9 (1993).
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sample is sufficient to exclude the suspect as a possible source of the crime sam-
ple.1s

In some social science studies, researchers examine recorded information and
characterize it. For instance, in a study of death sentencing in Georgia, legally
trained evaluators examined short summaries of cases and ranked them accord-
ing to the defendant’s culpability. 16 Two different aspects of reliability are worth
considering. First, the “within-observer” variability of judgments should be
small—the same evaluator should rate essentially identical cases the same way.
Second, the “between-observer” variability should be small—different evaluators
should rate the same cases the same way.

2. Is the measurement process valid?

Reliability is necessary, but not sufficient, to ensure accuracy. In addition to reli-
ability, validity is needed. A valid measuring instrument measures what it is sup-
posed to. Thus, a polygraph measures certain physiological responses to stimuli.
It may accomplish this task reliably. Nevertheless, it is not valid as a lie detector
unless increases in pulse rate, blood pressure, and the like are well correlated
with conscious deception.

When an independent and highly accurate way of measuring the variable!” of
interest is available, it may be used to validate the measuring system in question.
Breathalyzer readings may be validated against alcohol levels found in blood
samples. Employment test scores may be validated against job performance. A
common measure of validity is the correlation coefficient between the criterion
(job performance) and the predictor (the test score).18

3. Are the measurements recorded correctly?

Judging the adequacy of data collection may involve examining the process by
which measurements are recorded and preserved. Are responses to interviews
coded and logged correctly? Are all the responses to a survey included? If gaps or
mistakes are present, do they appear randomly so they do not distort the results?
Once it is shown that measurements are reliable, valid, and properly
recorded, inferences can be made. The purpose of collecting and analyzing the
data may be to describe something, such as the prevalence of a blood type, or it

15. Committee on DNA Technology in Forensic Science, National Research Council, DNA Technology
in Forensic Science 61-62 (1992).

16. David C. Baldus et al., Equal Justice and the Death Penalty: A Legal and Empirical Analysis 49-50
(1990).

17. For present purposes, a variable is a numerical characteristic of units in a study. For instance, in a sur-
vey of people, the unit of analysis is the person, and variables might include income (in dollars per year) and
educational level (years of schooling completed). In a study of school districts, the unit of analysis is the dis-
trict, and variables might include average family income of residents and average test scores of students.

18. E.g., Washington v. Davis, 426 U.S. 229, 252 (1976); Albemarle Paper Co. v. Moody, 422 U.S. 405,
430-32 (1975). S discussion of the correlation coefficient infra § 111.F.2. Various statistics are used to charac-
terize the reliability of laboratory instruments, psychological tests, or human judgments. These include the
standard deviation (SD) as well as the correlation coefficient. See infra 8 II1.E.
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may be to investigate a question of cause and effect, such as the deterrent effect
of capital punishment.

B. Descriptive Surveys and Censuses

A census measures some characteristic of every unit in a population of individu-
als or objects. A survey, alternatively, measures characteristics only in part of a
population. The accuracy of the information collected in a census or survey de-
pends on how the units are selected, which units are actually measured, and
how the measurements are made.

1. What method is used to select the units to be measured?

By definition, a census seeks to measure every unit in the population. It may fall
short of this goal, in which case the question must be asked whether the missing
data are likely to differ in some systematic way from the data that are collected.
The U.S. Bureau of the Census estimates that the past six censuses failed to
count everyone, and there is evidence that the undercount is greater in certain
subgroups of the population. Supplemental studies may enable statisticians to
adjust for such omissions, but the adjustments may rest on uncertain assump-
tions. 19

The methodological framework of a scientific survey is more complicated
than that of a census. In surveys that use random sampling methods, a sampling
frame, that is, an explicit list of units in the population, is created. Individual
units then are selected by a kind of lottery procedure, and measurements are
made on these sampled units. For example, a defendant charged with a notori-
ous crime who seeks a change of venue may commission an opinion poll to
show that popular opinion is so adverse and deep-rooted that it will be difficult
to impanel an unbiased jury. The population consists of all persons in the juris-
diction who might be called for jury duty. A sampling frame here could be the
list of these persons as maintained by appropriate officials.2 In this case, the fit
between the sampling frame and the population would be excellent.

19. For conflicting views on proposed adjustments to the 1990 census, see Stephen E. Fienberg, The New
York City Census Adjustment Trial: Witness for the Plaintiffs, 34 Jurimetrics J. 65 (1993); David A. Freedman,
Adjusting the Census of 1990, 34 Jurimetrics J. 99 (1993); John E. Rolph, The Census Adjustment Trial:
Reflections of a Witness for the Plaintiffs , 34 Jurimetrics J. 85 (1993); Kenneth W. Wachter, The Census
Adjustment Trial: An Exchange, 34 Jurimetrics J. 107 (1993). See also Symposium , Undercount in the 1990
Census , 88 J. Am. Stat. Ass'n 1044 (1993). Similarly, the courts are divided over the legal standard governing
claims that adjustment is statutorily or constitutionally compelled. Compare New York City v. United States
Dep’t of Commerce, 63 U.S.L.W. 2128 (2d Cir. 1994) (equal protection clause requires government to show
compelling interest that could justify Secretary of Commerce’s refusal to adjust 1990 census) with City of
Detroit v. Franklin, 4 F.3d 1367 (6th Cir. 1993) (neither statutes nor constitution requires adjustment), cert
denied, 114 S. Ct. 1212 (1994); Tucker v. Dep’t of Commerce, 958 F.2d 1411 (7th Cir.) (issue is not justicia-
ble), cert. denied, 113 S. Ct. 407 (1992).

20. If the jury list is not compiled properly from appropriate sources, it might be subject to challenge. Se
David Kairys et al., Jury Representativeness: A Mandate for Multiple Source Lists , 65 Cal. L. Rev. 776 (1977).
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In other situations, the sampling frame may cover less of the population. In an
obscenity case, for example, the defendant’s poll of opinion about community
standards?! should identify all adults in the legally relevant community as the
population, but obtaining the names of all such people may not be possible. If
names from a telephone directory are used, people with unlisted numbers are
excluded from the sampling frame. If these people, as a group, hold different
opinions from those included in the sampling frame, the poll will not reflect this
difference, no matter how many individuals are polled and no matter how well
their opinions are elicited.?? The poll’s measurement of community opinion will
be biased, although the magnitude of this bias may not be great.

Not all surveys use random selection. In some commercial disputes involving
trademarks or advertising, the population of all potential purchasers of the prod-
ucts is difficult to identify. Some surveyors may resort to an easily accessible sub-
group of the population, such as shoppers in a mall. 22 Such convenience sam ples
may be biased by the interviewer’s discretion in deciding whom to interview—a
form of selection bias—and the refusal of some of those approached to
participate—nonresponse bias.2* Selection bias is acute when constituents write
their representatives, listeners call into radio talk shows, or interest groups collect
information from their members.2> Selection bias also affects data from jury-
reporting services that gather information from readily available sources.26

21. On the admissibility of such polls, compare, eg., Saliba v. State, 475 N.E.2d 1181, 1187 (Ind. Ct. App.
1985) (“Although the poll did not . . . [ask] the interviewees . . . whether the particular film was obscene, the
poll was relevant to an application of community standards”) with United States v. Pryba, 900 F.2d 748, 757
(4th Cir.) (“Asking a person in a telephone interview as to whether one is offended by nudity, is a far cry from
showing the materials . . . and then asking if they are offensive,” so exclusion of the survey results was proper),
cert. denied, 498 U.S. 924 (1990).

22. A classic example of selection bias is the 1936 Literary Digest poll. After successfully predicting the
winner of every U.S. presidential election since 1916, the Digest used the replies from 2.4 million respondents
to predict that Alf Landon would win 57% to 43%. In fact, Franklin Roosevelt won by a landslide vote of 62%
to 38%. See Freedman et al., supra note 12, at 306. The Digest was so far off, in part, because it chose names
from telephone books, rosters of clubs and associations, city directories, lists of registered voters, and mail order
listings. Id. at 306-08, A-13 n.6. In 1936, when only one household in four had a telephone, the people whose
names appeared on such lists tended to be more affluent. Lists that overrepresented the affluent had worked
well for sampling in earlier elections, when rich and poor voted along similar lines, but the bias in the sam-
pling frame proved fatal when the Great Depression made economics a salient consideration for voters. See
Judith M. Tanur, Samples and Surveys , in Perspectives on Contemporary Statistics 55, 57 (David C. Hoaglin &
David S. Moore eds., 1992). Today, survey organizations conduct polls by telephone, but most voters have
telephones, and these organizations select the numbers to call at random rather than sampling names from
telephone books.

23. E.g., RJ. Reynolds Tobacco Co. v. Loew’s Theatres, Inc., 511 F. Supp. 867, 876 (S.D.N.Y. 1980)
(questioning the propriety of basing a “nationally projectable statistical percentage” on a suburban mall inter-
cept study).

24. Nonresponse bias is discussed infra § 11.B.2.

25. E.g., Pittsburgh Press Club v. United States, 579 F.2d 751, 759 (3d Cir. 1978) (tax-exempt club’s mail
survey of its members to show little sponsorship of income-producing uses of facilities was held to be inadmis-
sible hearsay because it “was neither objective, scientific nor impartial”), rev'd on other grounds, 615 F.2d 600
(3d Cir. 1980). So, too, veterans groups collected instances of multiple myeloma (a form of cancer) among
veterans of the Hiroshima and Nagasaki occupation forces. They claimed that the number of cases was un-
usual and called for government study and compensation. Such anecdotal evidence, based on a few cases
without systematic comparison or data collection, may be an incentive for more careful investigation but may
also reflect rumor and speculation rather than fact. In this instance, a committee of the National Research
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Various procedures are available to cope with selection bias. In quota sam-
pling, the interviewer is instructed to interview so many women, so many older
men, so many ethnic minorities, or the like. But quotas alone still leave vast dis-
cretion in selecting among the members of each category and therefore do not
solve the problem of selection bias.

Probability sampling methods, in contrast, ideally are suited to avoid selection
bias. Once the conceptual population is reduced to a tangible sampling frame,
the units to be measured are selected by some kind of lottery that gives each unit
in the sampling frame a known, nonzero probability of being chosen. Selection
according to a table of random digits or the like2” leaves no room for selection
bias. 28

2. Of the units selected, which are measured?

Although probability sampling ensures that, within the limits of chance, the
sample of units selected will be representative of the sampling frame, the ques-
tion remains as to which units actually get measured. When objects like receipts
(for an audit) or vegetation (for a study of the ecology of a region) are sampled,
all can be examined. Human beings are more troublesome. Some may refuse to
respond, and the survey should report the nonresponse rate. A large nonresponse
rate warns of bias,2® but it does not necessarily demonstrate bias. Supplemental

Council found no evidence that the rate of multiple myeloma for the “atomic veterans” was higher than that in
similar populations. Moore, supra note 12, at 124.

26. For example, a study from the mid-1980s found that the average award in medical malpractice cases
was $962,258. The figure comes from a jury-reporting service that relies on newspaper accounts and other
sources that are likely to report predominantly large awards. Kenneth Jost, Still Warring Over Medical
Malpractice, A.B.A. J., May 1993, at 68, 71 (citing an interview with Neil Vidmar). On the limitations of jury
verdict service and other reports of jury awards, see, eg., Theodore Eisenberg & Thomas A. Henderson, Jr.,
Inside the Quiet Revolution in Products Liability , 39 UCLA L. Rev. 731, 765 n.100 (1992).

27. In simple random sampling, each unit has the same probability of being chosen. More complicated
methods, such as stratified sampling and cluster sampling, have advantages in certain applications. In system-
atic sampling, every fifth, tenth, or hundredth (in mathematical jargon, every nth) unit in the sampling frame
is selected. If the starting point is selected at random and the units are not in any special order, then this pro-
cedure is comparable to simple random sampling.

28. Before 1968, most federal districts used the “key man” system for compiling lists of eligible jurors.
Individuals believed to have extensive contacts in the community would suggest names of prospective jurors,
and the qualified jury wheel would be made up from those names. To reduce the risk of discrimination associ -
ated with this system, the Jury Selection and Service Act of 1968, 28 U.S.C. §8 1861-1878 (1988), substituted
the principle of “random selection of juror names from the voter lists of the district or division in which court
is held.” S. Rep. No. 891, 90th Cong., 1st Sess. 10 (1967), reprinted in 1968 U.S.C.C.A.N. 1792, 1793.

29. The 1936 Literary Digest election poll illustrates the danger. Only 24% of the 10 million people who
received questionnaires returned them. Most of these respondents probably had strong views on the candi-
dates, and most of them probably objected to President Roosevelt’s innovative economic programs. This self-
selection is likely to have biased the poll. Maurice C. Bryson, The Literary Digest Poll: Making of a Statistical
Myth, 30 Am. Statistician 184 (1976); Freedman et al., supra note 12, at 307-08.

In United States v. Gometz, 730 F.2d 475, 478 (7th Cir.) (en banc), cert. denied , 469 U.S. 845 (1984), the
Seventh Circuit recognized that “a low rate of response to juror questionnaires could lead to the underrepre-
sentation of a group that is entitled to be represented on the qualified jury wheel.” Nevertheless, the court held
that under the Jury Selection and Service Act of 1968, 28 U.S.C. 88 1861-1878 (1988), the clerk did not abuse
his discretion by failing to take steps to increase a response rate of 30%. According to the court, “Congress
wanted to make it possible for all qualified persons to serve on juries, which is different from forcing all quali-
fied persons to be available for jury service.” Gometz , 730 F.2d at 480. Although it might “be a good thing to
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study may establish that the nonrespondents do not differ systematically from the
respondents with respect to the characteristics of interest3® or may permit the
missing data to be imputed.3!

In short, a convincing survey defines an appropriate population to study, uses
an unbiased method for selecting units to measure, with a reliable and valid
procedure for gathering information on the units selected for study, and suc-
ceeds in gathering information on all or a fair cross section of these units. When
these goals are met, the sample tends to be representative of the population: The
measurements within the sample describe fairly the characteristics in the popu-
lation. It remains possible, however, that despite every precaution, the sample,
being less than exhaustive, is not representative; proper statistical analysis helps
address the magnitude of this risk, at least for probability samples.32 Of course,
surveys may be useful even if they fail to meet all of the criteria given above; but
then, additional arguments are needed to justify the inferences.

C. Experiments

In many cases, the court needs more than a description of a population. It seeks
an answer to a question of causation. Would additional information in a securi-
ties prospectus disclosure have caused potential investors to behave any differ-
ently? Does the similarity in the names of two products lead consumers to buy
one brand because of their familiarity with the other brand? Does capital pun-
ishment deter crime? Do food additives cause cancer?

follow up on persons who do not respond to a jury questionnaire,” the court concluded that Congress merely
“wanted to make it possible for all qualified persons to serve on juries” and “was not concerned with anything
so esoteric as nonresponse bias.” 1d. at 479, 480, 482.

30. Even when demographic characteristics of the sample match those of the population, however, caution
still is indicated. In the 1980s, a behavioral researcher sent out 100,000 questionnaires to explore how women
viewed their relationships with men. Shere Hite, Women and Love: A Cultural Revolution in Progress (1987).
She amassed a huge collection of anonymous letters from thousands of women disillusioned with love and
marriage, and she wrote that these responses established that the “outcry” of some feminists “against the many
injustices of marriage—exploitation of women financially, physically, sexually, and emotionally” is “just and
accurate.” Id. at 344. The outcry may indeed be justified, but this research does little to prove the point. About
95% of the 100,000 inquiries did not produce responses. The nonrespondents may have had less distressing
experiences with men and therefore did not see the need to write autobiographical letters. Furthermore, this
systematic difference would be expected within every demographic and occupational class. Therefore, the
argument that the sample responses are representative because “those participating according to age,
occupation, religion, and other variables known for the U.S. population at large in most cases quite closely
mirrors that of the U.S. female population” is far from convincing. Id. at 777. In fact, the results of this non -
random sample differ dramatically from those of polls with better response rates. See Chamont Wang, Sense
and Nonsense of Statistical Inference: Controversy, Misuse, and Subtlety 174-76 (1993). See also David
Streitfeld, Shere Hite and the Trouble with Numbers, 1 Chance 26 (1988).

31. Methods for “imputing” missing data are sketched in, e.g., Tanur, supra note 22, at 55. For more
technical references, see, e.g., Donald B. Rubin, Multiple Imputation for Nonresponse in Surveys (1987);
Imputation and Editing of Faulty or Missing Survey Data (Faye Aziz & Fritz Scheuren eds., 1978). Efforts to
fill in missing data can be problematic. The “easy case” is one in which the response rate is so high that even if
all nonrespondents had responded in a way adverse to the proponent of the survey, the substantive conclusion
would be unaltered.

32. Seeinfra § IV.
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Controlled experiments are, far and away, the best vehicle for establishing a
causal relationship. Such experiments may exist before the commencement of
the litigation. If so, it becomes the task of the lawyer and appropriate experts to
explain this research to the court. Examples of such “off-the-shelf” research are
experiments pinpointing conditions under which eyewitnesses tend to err in
identifying criminals3? or studies of how sex stereotyping affects perceptions of
women in the workplace.3* Even if no preexisting studies are available, a case-
specific one may be devised:3® A psychologist may simulate the conditions of a
particular eyewitness’s identification to see whether comparable identifications
tend to be correct;% an organization investigating racial discrimination in the
rental-housing market may send several “testers” (who, it is hoped, differ only in
their race) to rent a property. 3’

A well-designed experiment shows how one variable responds to changes in
variables under the control of the experimenter. Variables not directly controlled
should be subject only to random fluctuations. For example, to verify that a fer-
tilizer improves crop yields, it is insufficient only to report that the yield is high
in a fertilized field. It may be that the yield would have been higher without the
fertilizer. To compare the outcome with fertilizer to the outcome without fertil -
izer, two essentially identical fields can be planted, and fertilizer can be applied
only to one field. If the conditions in the fields are nearly identical, any large dif-
ference in the yields must be the result of fertilizer. By definition, other possible
causes have been eliminated.

To the extent that the two fields are not truly identical, but differ in a myriad
of ways that are hard to specify but could affect the yield, the experiment may be
replicated on many fields randomly assigned to be fertilized or not.38 These
strategies of control and randomization are the earmarks of good experiments.

33. E.g., State v. Chapple, 660 P.2d 1208, 1223-24 (Ariz. 1983) (reversing a conviction for excluding ex-
pert testimony about scientific research on eyewitness testimony). For citations to the case law and scientific
literature, see, eg., 1 McCormick on Evidence § 206(A) (John William Strong ed., 4th ed. 1992).

34. The testimony of a social psychologist about stereotyping played a limited—and controversial—role in
Price Waterhouse v. Hopkins, 490 U.S. 228, 235 (1989). Compare Gerald V. Barrett & Scott B. Morris, The
American Psychological Association’s Amicus Curiae Brief in  Price Waterhouse v. Hopkins : The Values of
Science Versus the Values of the Law , 17 Law & Hum. Behav. 201 (1993) with Susan T. Fiske et al., What
Constitutes a Scientific Review?: A Majority Retort to Barrett and Morris, 17 Law & Hum. Behav. 217 (1993).

35. For a review of the law on such pretrial experiments and a proposal that the parties be encouraged to
cooperate in the design of such experiments, see 1 McCormick on Evidence, supra note 33, § 202.

36. Willem A. Wagenaar, The Proper Seat: A Bayesian Discussion of the Position of the Expert Witness , 12
Law & Hum. Behav. 499 (1988) (describing the difficulty of presenting the results of such an experiment to a
court in the Netherlands).

37. E.g., United States v. Youritan Constr. Co., 370 F. Supp. 643, 647 (N.D. Cal. 1973), aff'd in part, 509
F.2d 623 (9th Cir. 1975).

38. Statistically significant differences are those that are so large that they rarely would occur with an inef-
fectual fertilizer just because the fields randomly selected for the fertilizer treatment happen to be the best for
growth. The techniques for establishing statistical significance are considered infra § IV.
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1. What are the independent and dependent variables?

In investigating a possible cause-and-effect relationship, the variable that charac-
terizes the effect is called the dependent variable, since it may depend on the
causes.®® In contrast, the variables that represent the causes are called indepen -
dent variables.*® In the fertilizer experiment, crop yield is the dependent vari-
able. It depends on such independent variables as the density of planting, the
level of irrigation or rainfall, the nature of the soil, and the extent of insect infes-
tation. Listing such variables is a useful exercise because it focuses attention on
which factors are under control (and can be excluded as causes of the observed
differences) and which are not (and may mask a causal relation or give a false
appearance of one).

2. What are the confounding variables?

A confounding variable is correlated with the independent variables and with the
dependent variable. Since a confounding variable changes with one or more in-
dependent variables, it is generally not possible to determine whether changes in
the independent variables caused changes in the dependent variable or whether
changes in the confounding variable did—especially if the investigator did not
collect data on the confounder . For example, many studies have been conducted
to determine whether physical exercise increases life span. In one such study,
the physical fitness of a large number of men was measured. Over the next
sixteen years, about twice as many men in the lowest fitness quartile died as did
men in the highest quartile. 4 One interpretation is that maintaining a high level
of physical activity protects against death. However, both physical fitness and
mortality are correlated with general health at the beginning of the study; thus, it
is possible that the highly fit men lived longer, not because they exercised, but
simply because they were healthier to begin with. 42 A disproportionate number
of healthier men in the high fitness group biases the study in favor of finding
improved survival in that group.

Randomly assigning subjects to a treatment and a control group eliminates
this problem.#3 In experiments on human beings, it is especially difficult to en-
sure that the treatment and control groups are identical, but with random selec-
tion the many factors not under the experimenter’s control tend to balance out

39. Dependent variables also may be called response variables.

40. Independent variables also may be called factors or explanatory variables.

41. Leiv Sandvik et al., Physical Fitness as a Predictor of Mortality Among Healthy, Middle-Aged Norwegian
Men , 328 New Eng. J. Med. 533 (1993). The lower mortality among the fittest men was attributable chiefly to
a lower risk of dying of cardiovascular causes.

42. Gregory D. Curfman, The Health Benefits of Exercise: A Critical Reappraisal , 328 New Eng. J. Med.
574, 575 (1993).

43. “A randomized, controlled trial of physical activity for the primary prevention of cardiovascular dis-
ease . . . has never been performed and is probably not feasible because of problems related to compliance and
cost.” Id. Butsee M. A. Fiatarone et al., Exercise Training and Nutritional Supplementation for Physical Frailty
in Very Elderly People, 330 New Eng. J. Med. 1769 (1994).
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in both groups.4* A handful of well-designed studies is far more convincing than
any number of biased ones.

Two insights are important. First, outcome figures from a treatment group
without a control group reveal very little and can be misleading.*> Comparisons
are essential. Second, if the control group was obtained through random
assignment before treatment, a difference in the outcomes between treatment
and control groups may be accepted, within the limits of statistical error, as the
true measure of the treatment effect.46 However, if the control group was created
in any other way, differences in the groups that existed before treatment may
contribute to differences in the outcomes or mask differences that otherwise
would be observed. Thus, observational studies succeed to the extent that their
treatment and control groups are comparable, apart from the treatment.

3. Can the results be generalized?

All experiments are conducted with a sample of a certain population, at a certain
place, at a certain time, and with a limited number of treatments. With respect
to the sample studied, the experiment may be persuasive. It may have succeeded
in controlling all confounding variables and in finding an unequivocally large
difference between the treatment and control groups. If so, its “internal validity”
will not be disputed; in the sample studied, the treatment has an effect.

But an issue of “external validity” remains. To extrapolate from the limiting
conditions of an experiment always raises questions. If juries react differently to
competing instructions on the law of insanity in cases of housebreaking and of
incest,*” would the difference persist if the charge were rape or murder? Would
the failure of ex-convicts to react to transitory payments after release hold if con-
ditions in the employment market were to change radically?48

Confidence in the appropriateness of an extrapolation cannot come from the
experiment itself. It must come from knowledge about which outside factors

44. Of course, the possibility that the two groups will not be comparable in some unrecognized way can
never be eliminated. Random assignment, however, allows the researcher to compute the probability of seeing
a large difference in the outcomes when the treatment actually has no effect. When this probability is small,
the difference in the response is said to be “statistically significant.” See infra § IV.B.2.

Randomization also ensures that the assignment of subjects to treatment and control groups is free from
conscious or unconscious manipulation by investigators or subjects. Randomization may not be the only way
to ensure such protection, but “it is the simplest and best understood way to certify that one has done so.”
Philip W. Lavori et al., Designs for Experiments—Parallel Comparisons of Treatment, in  Medical Uses of
Statistics 61, 66 (John C. Bailar 11l & Frederick Mosteller eds., 2d ed. 1992). To avoid ambiguity, the re-
searcher should be explicit “about how the randomization was done (e.g., table of random numbers) and exe-
cuted (e.g., by sealed envelopes prepared in advance).” Id.

45. For an effort to identify circumstances in which such studies may be informative, see John C. Bailar Ill
et al., Studies Without Internal Controls, in  Medical Uses of Statistics, supra note 44, at 105.

46. The problem of statistical error is treated infra § IV.

47. See Rita James Simon, The Jury and the Defense of Insanity 58-59 (1967).

48. For an experiment on income support and recidivism, see Peter H. Rossi et al., Money, Work, and
Crime: Experimental Evidence (1980). The interpretation of the data has proved controversial. See Hans
Zeisel, Disagreement over the Evaluation of a Controlled Experiment, 88 Am. J. Soc. 378 (1982) (with com -
mentary).
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would or would not affect the outcome.*® Sometimes, several experiments or
other studies, each having different limitations, all point in the same direction.%0
Such convergent results strongly suggest the validity of the generalization.5!

D. Observational Studies of Causation

The bulk of the statistical studies seen in court are observational, not experimen-
tal. In an experiment the investigators select certain units for treatment. In an
observational study the investigators have no control over who or what receives
the treatment. Take the question of whether capital punishment deters murder.
To do a randomized controlled experiment, people would have to be assigned
randomly to a control group and a treatment group. The controls would know
that they could not receive the death penalty for murder, while those in the
treatment group would know they could be executed. The rate of subsequent
murders by the subjects in these groups would be observed. Such an experiment
is unacceptable—politically, ethically, and legally.52

Nevertheless, many studies of the deterrent effect of the death penalty have
been conducted, all observational, and some have attracted judicial attention.>3
Researchers have catalogued differences in the incidence of murder in states
with and without the death penalty, and they have analyzed changes in homi-
cide rates and execution rates over the years. In such observational studies, inves-
tigators may speak of control groups (such as the states without capital punish-

49. Such judgments are easiest in the natural sciences, but even here, there are problems. For example, it
may be difficult to infer human reactions to substances that affect animals. First, there are inconsistencies
across test species: A chemical may be carcinogenic in mice but not in rats. Extrapolation from rodents to hu-
mans is even more problematic. Second, to get measurable effects in animal experiments, chemicals are ad-
ministered at very high doses. Results are extrapolated—using mathematical models—to the very low doses of
concern in humans. However, there are many dose-response models to use and few grounds for choosing
among them. Generally, different models produce radically different estimates of the “virtually safe dose” in
humans. David A. Freedman & Hans Zeisel, From Mouse to Man: The Quantitative Assessment of Cancer
Risks, 3 Stat. Sci. 3 (1988). For these reasons, many experts—and some courts in toxic tort cases—have con-
cluded that evidence from animal experiments is generally insufficient to establish causation. See Michael D.
Green, Expert Witnesses and Sufficiency of Evidence in Toxic Substances Litigation:  The Legacy of Agent
Orange and Bendectin Litigation , 86 Nw. U. L. Rev. 643 (1992); Lois S. Gold et al., Rodent Carcinogens:
Setting Priorities, 258 Science 261 (1992); D. Krewski et al., A Model-Free Approach to Low-Dose
Extrapolation, 90 Envtl. Health Persp. 279 (1991); Susan R. Poulter, Science and Toxic Torts: Is There a
Rational Solution to the Problem of Causation?, 7 High Tech. L.J. 189 (1993) (epidemiological evidence on
humans is needed). See also Committee on Risk Assessment Methodology, National Research Council, Issues
in Risk Assessment (1993).

50. This is the case, for example, with eight studies indicating that jurors who approve of the death penalty
are more likely to convict in a capital case. Phoebe C. Ellsworth, Some Steps Between Attitudes and Verdicts, in
Inside the Juror 42, 46 (Reid Hastie ed., 1993). Nevertheless, in Lockhart v. McCree, 476 U.S. 162 (1986), the
Supreme Court held that the exclusion of opponents of the death penalty in the guilt phase of a capital trial
does not violate the constitutional requirement of an impartial jury.

51. See Zeisel, supra note 12, at 252-62.

52. Cf. Experimentation in the Law: Report of the Federal Judicial Center Advisory Committee on
Experimentation in the Law (Federal Judicial Center 1981) [hereinafter Experimentation in the Law] (study
of ethical issues raised by controlled experimentation in the evaluation of innovations in the justice system).

53.See generally Hans Zeisel, The Deterrent Effect of the Death  Penalty: Facts v. Faith, 1976 Sup. Ct. Rev.
317.
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ment) and of controlling for potentially confounding variables (e.g., worsening
economic conditions).3 However, association is not causation, and the causal
inferences that can be drawn from such analyses rest on a less secure foundation
than that provided by a controlled randomized experiment. 5

Of course, observational studies can be very useful. The evidence that smok-
ing causes lung cancer in humans, although largely observational, is compelling.
In general, observational studies provide powerful evidence in the following cir-
cumstances.

 The association is seen in studies of different types among different
groups. This reduces the chance that the observed association is due to a
defect in one type of study or a peculiarity in one group of subjects.

- The association holds when the effects of plausible confounding variables
are taken into account by appropriate statistical techniques, such as com-
paring smaller groups that are relatively homogeneous with respect to the
factor. 56

54. A procedure often used to control for confounding in observational studies is regression analysis. The
underlying logic is described infra § I11.F.3. The early enthusiasm for using multiple regression analysis to
study the death penalty was not shared by reviewers. Compare Isaac Ehrlich, The Deterrent Effect of Capital
Punishment: A Question of Life and Death, 65 Am. Econ. Rev. 397 (1975) with, e.g ., Lawrence R. Klein et al.,
The Deterrent Effect of Capital Punishment: An Assessment of the Estimates, in Panel on Research on Deterrent
and Incapacitative Effects, National Research Council, Deterrence and Incapacitation: Estimating the Effects
of Criminal Sanctions on Crime Rates 336 (Alfred Blumstein et al. eds., 1978); Edward Leamer, Let’s Take the
Con Out of Econometrics , 73 Am. Econ. Rev. 31 (1983); Richard O. Lempert, Desert and Deterrence: An
Assessment of the Moral Bases of the Case for Capital Punishment, 79 Mich. L. Rev. 1177 (1981); Richard O.
Lempert, The Effect of Executions on Homicides: A New Look in  an Old Light , 29 Crime & Deling. 88 (1983).

55. See, e.g ., Experimentation in the Law, supra note 52, at 18:

[G]roups selected without randomization will [almost] always differ in some systematic
way other than exposure to the experimental program. Statistical techniques can elimi-
nate chance as a feasible explanation for the differences, . . . [bJut without randomiza-
tion there are no certain methods for determining that observed differences between
groups are not related to the preexisting, systematic difference . . . [Clomparison be-
tween systematically different groups will yield ambiguous implications whenever the
systematic difference affords a plausible explanation for apparent effects of the experi-
mental program.

56. The idea is to control for the influence of a confounder by making comparisons separately within
groups for which the confounding variable is nearly constant and therefore has little influence over the vari-
ables of primary interest. For example, smokers are more likely to get lung cancer than nonsmokers. Age, gen-
der, social class, and region of residence are all confounders, but controlling for such variables does not really
change the relationship between smoking and cancer rates. On the basis of observational studies, most experts
believe that smoking does cause lung cancer (and many other diseases). For a recent review of the literature,
see 38 International Agency for Research on Cancer (IARC), World Health Org., IARC Monographs on the
Evaluation of the Carcinogenic Risk of Chemicals to Humans: Tobacco Smoking (1986). However, the as-
sociations seen in observational studies, even good ones, can be misleading. For example, women with herpes
are more likely to develop cervical cancer than women who have not been exposed to the virus. For a time, it
was believed that herpes caused cancer. In other words, the association was thought to be causal. Later re-
search suggests that herpes is only a marker of sexual activity. Women who have had multiple sexual partners
are more likely to be exposed not only to herpes but also to human papilloma virus. Certain strains of papil -
loma virus seem to cause cervical cancer, while herpes does not. Apparently, the association between herpes
and cervical cancer is not causal but is due to the effect of other variables. See Viral Etiology of Cervical
Cancer (Richard Peto & Harald zur Hausen eds., 1986); The Epidemiology of Human Papillomavirus and
Cervical Cancer (N. Mufioz et al. eds., 1992). For additional examples and discussion, see Freedman et al.,
supra note 12, at 11-25, 133-48.
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There is a plausible explanation for the effect of the independent vari-
ables; thus, the causal link does not depend on the observed association
alone. Other explanations linking the response to confounding variables
should be less plausible.57

When these criteria are not fulfilled, observational studies may produce legit-
imate disagreement among experts, and there is no mechanical procedure for
ascertaining who is correct. In the end, deciding whether associations are causal
is not a matter of statistics, but a matter of good scientific judgment, and the
questions that should be asked with respect to data offered on the question of
causation can be summarized as follows:

Was there a control group? If not, the study has little to say about
causation.

If there was a control group, how were subjects assigned to treatment or
control: through a process under the control of the investigator (a con-
trolled experiment) or a process outside the control of the investigator (an
observational study)?

If it was a controlled experiment, was the assignment made using a chance
mechanism (randomization), or did it depend on the judgment of the in-
vestigator?

If the data came from an observational study or a nonrandomized con-
trolled experiment, how did the subjects come to be in treatment or in
control groups? Are the groups comparable? What factors are confounded
with treatment? What adjustments were made to take care of confound-
ing? Were they sensible?58

57. David S. Moore & George P. McCabe, Introduction to the Practice of Statistics 202 (2d ed. 1993).

58. These questions are adapted from Freedman et al., supra note 12, at 25. As with controlled experi-
ments, chance variation sometimes produces an apparent association between variables when none really exists
(see infra § IV).
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[1l. How Have the Data Been Presented?

After data have been collected, they should be presented in a way that makes
them intelligible and revealing. Huge quantities of data can be summarized with
a few numbers or with graphical displays. However, the wrong summary or a dis-
torted graph can mislead. >

A. Isthe Data Display Sufficiently Complete?

Selective presentation of numerical information is like quoting someone out of
context. A television commercial for the Investment Company Institute (the mu-
tual fund trade association) said that a $10,000 investment made in 1950 in an
average common stock mutual fund would have increased to $113,500 by the
end of 1972. The Wall Street Journal indicated that the same investment spread
over all the stocks making up the New York Stock Exchange Composite Index
would have grown to $151,427. Mutual funds performed worse than the stock
market as a whole.® In this example, and in many other situations, it is helpful
to look beyond a single number to some comparison or benchmark that places
the isolated figure into perspective.

Even complete and accurate data can mislead if changes in the process of col-
lecting the data are not reported. For example, the number of petty larcenies re-
ported in Chicago more than doubled between 1959 and 1960—not because of
an abrupt crime wave—but because a new police commissioner introduced an
improved reporting system. 81 For many years, researchers ignored New York
City crime statistics because it was common practice for the precincts to under-
report crime to protect the reputations of their neighborhoods. When New York
City shifted to a centralized reporting system, burglary reports increased more
than fourteenfold in three years.62 During the 1970s, police officials in
Washington, D.C., “demonstrated” the success of President Nixon'’s law-and-or-
der campaign by valuing stolen goods at $49, just below the $50 threshold for
inclusion in the Federal Bureau of Investigation’s (FBI) Uniform Crime

59. See generally Campbell, supra note 12; Freedman et al., supra note 12; Huff, supra note 12; Katzer et
al., supra note 12; Moore, supra note 12; Runyon, supra note 12; Zeisel, supra note 12.

60. Moore, supra note 12, at 128.

61.1d. at 129.

62. Mark H. Maier, The Data Game: Controversies in Social Science Statistics 80-81 (1991).
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Reports. 63 Likewise, in the mid-1970s, the Indianapolis police department
tripled the number of crime reports deemed “without merit,” which hence went
uncounted in the Uniform Crime Reports. 54

Changes in the collection of data over the years are by no means limited to
crime statistics. In 1971, President Nixon signed the National Cancer Act, call-
ing for a war on cancer of the “same kind of concentrated effort that split the
atom and took man to the moon.”® Two decades and hundreds of billions of
dollars later, advocates of the war on cancer recognize that no general cure is
close at hand. They are encouraged, however, by the development of cures for
some cancers, and they cite improved survival rates for other cancers. Some epi-
demiologists question the inference that the changes in survival rates reflect a
successful assault on the disease. Because some kinds of cancers now are de-
tected earlier, patients with these cancers merely appear to live longer.5¢

Almost all series of numbers that cover many years are affected by changes in
definitions and collection methods. When considering time series data, it is
worth looking for any sudden jumps, which may signal a change in definitions
or data collection procedures. 7

63. James P. Levine et al., Criminal Justice in America: Law in Action 99 (1986); Maier, supra note 62, at
8l

64. Maier, supra note 62, at 81; Harold E. Pepinsky & Paul Jesilow, Myths That Cause Crime 28 (1985).

65. As quoted in Ralph W. Moss, The Cancer Syndrome 16 (1980). See also Richard M. Nixon, Acting
Against Cancer, Sat. Evening Post, July/Aug. 1986, at 67.

66. See Maier, supra note 62, at 55; James E. Enstrom & Donald F. Austin, Interpreting Cancer Survival
Rates, 195 Science 847 (1977); Cancer: Illusory Progress? , Sci. Am., June 1987, at 29. For a more recent dis-
cussion of the difficulties in interpreting trends in incidence and death rates for cancers, see Tim Beardsley, A
War Not Won , Sci. Am., Jan. 1994, at 130; National Cancer Inst., Evaluating the National Cancer Program:
An Ongoing Process (1994) (transcript of the President’s Cancer Panel meeting, Sept. 23, 1993, on file with
the National Cancer Institute).

67. Moore, supra note 12, at 129. Another problem can arise from collapsing categories in a table. In Philip
Morris, Inc. v. Loew’s Theatres, Inc., 511 F. Supp. 855 (S.D.N.Y. 1980), and R.J. Reynolds Tobacco Co. v.
Loew’s Theatres, Inc., 511 F. Supp. 867 (S.D.N.Y. 1980), Philip Morris and R.J. Reynolds sought an
injunction to stop the maker of Triumph low-tar cigarettes from running advertisesments claiming that partici-
pants in a national taste test preferred Triumph to other brands. Plaintiffs alleged that claims that Triumph was
a “national taste test winner” or Triumph “beats” other brands were false and misleading. An exhibit intro-
duced by defendant contained the following data:

Triumph some- Triumph
Triumph much Triumph somewhat Triumph about the what worse than much worse
better than Merit better than Merit same as Merit Merit than Merit
Number 45 73 7 93 36
Percentage 14% 22% 24% 29% 11%

511 F. Supp. at 866. Only 14% + 22% = 36% of the sample preferred Triumph to Merit, while 29% + 11% =
40% preferred Merit to Triumph. Id. at 856. By selectively combining categories, however, defendant at-
tempted to create a different impression. Since 24% found the brands about the same, and 36% preferred
Triumph, defendant claimed that a clear majority (36% + 24% = 60%) found Triumph “as good or better than
Merit.” Id. at 866. The court correctly resisted this chicanery, finding that defendant’s test results did not sup-
port the advertising claims. Id. at 856-57. The statistical issues in these cases are discussed more fully in 2
Gastwirth, supra note 1, at 633-39. For a hypothetical, but strikingly similar example of selective collapsing of
categories, see Richard P. Runyon, How Numbers Lie: A Consumer’s Guide to the Fine Art of Numerical
Deception 67-70 (1981).
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Few summaries of data are intended to mislead; most try to bring out broad
features of the data. All descriptive statistics, however, are simplifications, and
there are times when the details they omit are important. The statistical analyst
should be able to explain why the summary statistics used are sufficient to cap-
ture the relevant aspects of the data. For instance, the proportion of applicants
who pass an entrance examination for a police academy is sufficient to indicate
how significant a barrier the test is for that group of tested individuals. For this
purpose, it is not necessary to know how each individual scored.® In other sit-
uations, a graph may reveal a pattern not evident from the summary statistic. 6

B. Are Rates or Percentages Properly Interpreted?

Rates and percentages effectively summarize data, but these statistics can be mis-
interpreted. A percentage is a summary that makes a comparison between two
numbers. One number is the base, and the other number is compared with that
base. When the base is small, actual numbers may be more revealing than per-
centages. For example, there were media accounts in 1982 of a crime wave by
the elderly. The annual Uniform Crime Reports showed a near tripling of the
crime rate by older people since 1964, while crimes by younger people only
doubled. But people over 65 years of age account for less than 1% of all arrests.
In 1980, for instance, there were only 151 arrests of the elderly for robbery out of
139,476 total robbery arrests. 0

Usually, the small-base problem is obvious if the presentation is reasonably
complete. An expert who says that 50% of the people interviewed had a certain
opinion also should reveal how many individuals were contacted and how many
expressed an opinion.”* Then we know whether the 50% is 2 out of 4 or 500 out
of 1,000.

Finally, there is the issue of which numbers to compare.”? Researchers
sometimes choose among alternative comparisons. It may be worthwhile to ask
why they chose the one they did. Does it give a fair picture, or would another
comparison give a different view? A government agency, for example, may want
to compare the amount of service being given this year with that of earlier
years—but what earlier year ought to be the baseline? If the first year of opera-
tion is used, a large percentage increase due to start-up problems for a new

68. If the analyst wants to examine the effect of the test on different subgroups, the proportions in each rel-
evant subgroup must be considered. See, eg., Bouman v. Block, 940 F.2d 1211 (9th Cir.), cert. denied , 112 S.
Ct. 640 (1991); 1 Gastwirth, supra note 1, at 254-55.

69. Seeinfra§ 111.C.3.

70. Maier, supra note 62, at 83. See also Alfred Blumstein & Jacqueline Cohen, Characterizing Criminal
Careers, 237 Science 985 (1987).

71. For a poll suggesting that male and female trial attorneys have different impressions of the behavior of
male and female litigators but omitting the number of respondents by category, see Stephanie B. Goldberg,
“Good Girl” Litigators , A.B.A. J., June 1993, at 33.

72. See, e.g9 ., Runyon, supra note 67, at 75-79.
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agency should be expected.? If last year is used as the baseline, was last year also
part of an increasing service trend, or was it an unusually poor year? If the base
year is not representative of the other years, the percentage may not portray the
trend fairly.” No single question can be formulated to detect such distortions.
The judge can ask for the numbers from which the percentages were obtained,
and asking about the base can expose distortions. Ultimately, however, the judge
must recognize which numbers relate to which issues—a species of clear
thinking that is not reducible to a checklist.®

C. Doesa Graph Portray Data Fairly?

Graphs are useful for revealing key characteristics of a batch of numbers, trends
over time, and the relationships among variables.®

1. Displaying distributions: histograms

A graph commonly used to display the distribution of a batch of numbers is the
histogram. 77 One axis shows the numbers, and the other indicates how often
those fall within specified intervals (called a bin or a class interval ). For example,
we flipped a quarter ten times in a row and counted the number of heads in this
“pbatch” of ten tosses. For 50 batches, we got the following data:

77568 42365 43474 6847 4 74543
4 4253 54244 57235 464910 5566 4

The data are shown in Figure 1 below (with a bin width of 1).

73. Cf. Michael J. Saks, Do We Really Know Anything About the Behavior of the Tort Litigation System —
And Why Not?, 140 U. Pa. L. Rev. 1147, 1203 (1992) (using 1974 as the base year for computing the growth of
federal product liability filings exaggerates growth because “1974 was the first year that product liability cases
had their own separate listing on the cover sheets. ... The count for 1974 is almost certainly an
understatement . ... ).

74. Katzer et al., supra note 12, at 106.

75. For some assistance in the task of coping with percentages, see Zeisel, supra note 12, at 1-24.

76. See generally William S. Cleveland, The Elements of Graphing Data (1985); Moore & McCabe, supra
note 57, at 3-20.

77. For small batches of numbers, stem-and-leaf plots show all the values and how they are distributed. A
stem-and-leaf plot for 11, 12, 23, 23, 23, 23, 33, 45, 69 is shown below:

1|12
2| 3333
3|3
415

5

619

The numbers to the left of the line are the first digits; those to the right are the second digits. Thus, the entry
“2| 3333” stands for “23, 23, 23, 23.”
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Figure 1

Histogram showing how frequently various numbers of heads appeared in 50
batches of 10 tosses of a quarter. The bin width is 1.

insert figure 1 here

Figure 1 shows how the number of heads per batch of ten tosses is distributed
over the full range of possible values. The spread can be made to appear larger
or smaller, however, by changing the scale of the horizontal axis. Likewise, the
shape can be altered somewhat by changing the size of the bins.”® It may be
worth inquiring how the analyst chose the bin width.7®

2. Displaying trends

Graphs that plot many values of a variable over time are useful for seeing trends.
However, the scales on the axes matter. Figures 2 and 3 show how the scale of
an axis can be changed to give a different appearance to the same data. 8 In
Figure 2, the federal debt appears to skyrocket during the Reagan and Bush ad-
ministrations, whereas in Figure 3, the federal debt grows steadily during the
same years. The moral is simple: Pay attention to the markings on the axes to de-
termine whether the scale is appropriate.

78. In Figure 1, all the bins have equal widths. The histogram is just like a bar graph. However, govern-
ment agencies often publish economic and social data in tables with unequal intervals. The resulting his-
tograms have unequal bin widths; bar heights are calculated so that the areas (height x width) are pro-
portional to the frequencies. In general, a histogram differs from a bar graph in that it represents frequencies by
area, not height. See Freedman et al., supra note 12, at 29-40.

79. As the width of the bins decreases, the graph becomes more detailed. But the appearance becomes
more ragged until finally the graph is effectively a plot of each datum. No general rule can be stated as to what
bin width is optimal: “[T]he tolerable loss depends on the subject matter and the goal of the analysis.”
Cleveland, supra note 76, at 125.

80. The data are taken from figures in Howard Wainer, Graphical Answers to Scientific Questions , Chance,
Fall 1993, at 48, 50. This flexibility in presentation applies to other types of graphs as well. See Runyon, supra
note 67, at 37-39.
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Figure 2
The federal debt skyrockets under Reagan-Bush.

5

Federal debt (in trillions)

1970 1976 1980 1988 1992

Figure 3
The federal debt grows steadily under Reagan-Bush.
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12

Federal debt (in trillions)
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3. Displaying association: scatter diagrams

The relationship between two variables can be shown in a scatter diagram (also
known as a scatterplot or scattergram). Data on income and education for a sam-
ple of 350 men aged 25 to 29 in Texas®! provide an illustration. Each person in
the sample corresponds to one dot in the diagram. As indicated in Figure 4, the
horizontal axis shows this person’s education, and the vertical axis shows his in-
come. Person A completed 8 years of schooling (grade school) and had an in-
come of $19,000 dollars. Person B completed 16 years of schooling (college) and
had an income of $38,000.

Figure 4

Plotting a scatter diagram. The horizontal axis shows educational level, and the
vertical axis shows income.

insert figure 4 here

Figure 5 (next page) is the scatter diagram for all the Texas data. This scatter
diagram confirms an obvious point. There is a positive association between
income and education. In general, people with higher educational levels have
higher incomes. However, there are many exceptions to this rule, and the
association is not as strong as one might expect. The correlation coefficient is a
numerical measure of the strength of the association. 8

81. These data are from a public-use data tape, Bureau of the Census, U.S. Dep’t of Commerce, for the
Current Population Survey of March 1988. Income and education are self-reported. Income is truncated at
$100,000 and education (years of schooling completed) at 18 years.

82. For a discussion of correlation coefficients, see infra § I11.F.2.
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Figure5
Scatter diagram for income and education; men aged 25 to 29 in Texas.®

insert figure 5 here

D. Isan Appropriate Measure Used for the Center of a Distribution?

Perhaps the most familiar descriptive statistic is the arithmetic mean, or average.
The mean of a batch of numbers lies somewhere in the middle of the data. The
mean can be found by adding up all the numbers and dividing by how many
there are. The median has a different definition. Half the numbers are bigger
than the median, and half are smaller.8 Yet a third statistic is the mode —the
most common number in the data set. These measures have different proper-
ties.8> The mean takes account of all the data—it involves the total of all the
numbers—but, particularly with small data sets, a few unusually large or small

83. Education may be compulsory, but the Current Population Survey generally finds a small percentage
of respondents who report very little schooling. Such respondents will be found at the lower left corner of the
scatter diagram.

84. Technically, at least half the numbers are at least as large as the median, and at least half are as small as
the median. When the distribution is symmetric, the mean equals the median. The values diverge, however,
when the distribution is asymmetric, or skewed.

85. How big an error do you make in replacing every number by the “center” of the batch? (1) The mode
minimizes the number of errors; for the mode, all “errors” count the same, no matter what their sizes are.
Consequently, similar distributions can have very different modes, and the mode is rarely useful. (2) The me-
dian minimizes a different measure of error—the sum of all the differences (treating positive and negative dif-
ferences the same) between the center and the data points. (3) The mean minimizes the sum of the squared
differences.
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observations can cause it to shift substantially. The median, in contrast, is more
resistant to such outliers.

Which statistic is most useful depends on the purpose of the analysis. For ex-
ample, what should be made of a report that the average award in malpractice
cases skyrocketed from $220,000 in 1975 to more than $1 million in 1985786 It
might be noted that the median award almost certainly was far less than $1 mil-
lion8” and that the apparently explosive growth may be nothing more than the
addition of a tiny fraction of very large awards. Still, if the issue is whether insur-
ers were experiencing more costs from jury verdicts, then the mean is the more
appropriate statistic. The total of the awards is related directly to the mean, 8 but
this figure cannot be recovered from the median.

E. Isan Appropriate Measure of Variability Used?

The location of the center of a batch of numbers reveals nothing about the varia-
tions that these numbers exhibit. 9 Statistical measures of variability include the
range, the interquartile range, the mean absolute deviation, and the standard
deviation . The range is the difference between the high and the low. It seems
natural, and it indicates the maximum spread in the numbers, but it is generally
the most unstable because it depends entirely on the most extreme values. The
interquartile range is the difference between the 25th and 75th percentiles.® It
contains 50% of the numbers and is more resistant to changes in the extreme
values. The mean absolute deviation depends on all the numbers. It is calcu-
lated by averaging the differences between each number and the mean. The

86. Jost, supra note 26, at 68, 70-71.

87. A study of cases in North Carolina reported an “average” (mean) award of $367,737 and a median
award of only $36,500. Id. at 71. In TXO Prod. Corp. v. Alliance Resources Corp., 113 S. Ct. 2711 (1993),
briefs portraying punitive damages awards as being out of control reported mean punitive awards some ten
times larger than the median awards described in briefs defending the current system of punitive damages. See
Michael Rustad & Thomas Koenig, The Supreme Court and Junk Social Science: Selective Distortion in Amicus
Briefs, 72 N.C. L. Rev. 91, 145-47 (1993). The two measures differ so dramatically because the mean allows a
few huge awards to overwhelm the effects of many smaller ones.

Another dispute over the choice of the mean or the median involves the Railroad Revitalization and
Regulatory Reform Act, 49 U.S.C. § 11503, which forbids the taxation of railroad property at a higher rate than
other commercial and industrial property. To compare the rates, tax authorities often use the mean, but rail -
roads prefer the median. Se David A. Freedman, The Mean Versus the Median: A Case Study in 4-R Act
Litigation, 3 J. Bus. & Econ. Stat. 1 (1985).

88. To get the total, just multiply the mean by the number of awards. The more pertinent figure is not the
total of jury awards, but actual claims experience, including settlements.

89. These and related statistical issues are pursued further in, eg., Eisenberg & Henderson, supra note 26,
at 731, 764-72; Scott Harrington & Robert E. Litan, Causes of the Liability Insurance Crisis , 239 Science 737,
740-41 (1988); Saks, supra note 73, at 1147, 1248-54.

90. The numbers 1, 2, 5, 8, 9 have 5 as their mean and median. So do the numbers 5, 5, 5, 5, 5. In the first
batch, the numbers vary considerably about their mean; in the second, the numbers do not vary at all.

91. By definition, 25% of the data fall below the 25th percentile. The median is the 50th percentile.
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standard deviation is like the mean absolute deviation except that the squared
differences® from the mean are averaged, and the square root is extracted.
There are no hard-and-fast rules as to which statistic is the best. In general,
the bigger these measures of spread are, the more the numbers are dispersed.
Particularly in small data sets, the standard deviation can be influenced heavily
by a few outlying values. To remove this influence, the mean and the standard
deviation can be recomputed with the outliers discarded.® Beyond this, any of
the statistics can be supplemented with a figure that displays much of the data.®

F. Isan Appropriate Measure of Association Used?

Many cases involve statistical association. Does an employer’s requirement of
passing a test for promotion have an exclusionary effect that depends on race?
Does the salary of workers depend on gender? Does the incidence of murder
vary with the rate of executions for convicted murderers? Do consumer pur-
chases of a product depend on the presence or absence of a product warning?

Statistics, such as the mean and the standard deviation, describe each variable
in isolation. They do not describe the extent to which two variables are associ-
ated. This section will discuss statistics—percentages, proportions, ratios, correla-
tion coefficients, and slopes of regression lines—that can be used to describe the
association between two variables. %

92. If a difference is 10, the squared difference is 10 x 10 = 100. The mean of the squared differences is
known as the variance.

93. The square root of 100 is 10. Taking the square root corrects for the fact that the variance is on a differ-
ent scale than the measurements themselves. If the measurements are of length in inches, the variance is in
square inches. Taking the square root changes back to inches.

94. Alternatively, a five-number summary, which lists the smallest value, the 25th percentile, the median,
the 75th percentile, and the largest value, may be given. The five-number summary may be presented as a
boxplot. If the five numbers were 10, 25, 40, 65, and 90, the boxplot would look like the following:

=L

10 25 40 65 90

There are many variations on this idea in which the boundaries of the box or the whiskers extending from it
represent different points in the distribution.

95. The measures of variability discussed above depend on the units of measurement. To facilitate com-
parisons of the variability of different distributions, another statistic known as the coefficient of variation often is
used. It is the standard deviation expressed as a percentage of the mean. Consider the batch of numbers 1, 4, 4,
7, 9. The mean is 25/5 = 5, the variance is (16 + 1 + 1 + 4 + 16)/5 = 7.6, and the standard deviation is
A/7.6 =2.8. The coefficient of variation is 2.8/5 = 56%.

96. Even if there is an association, however, there will often be a second issue: Is the association causal?
For instance, women may be paid less than men because of gender discrimination; or, the difference may be
due to the influence of other covariates, such as education or experience. On the gquestion of causation, see
supra 88 11.C-D, which explains why controlled experiments are the best way to eliminate other variables as
possible causes of an observed association.
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1. Percentage-related statistics

Percentages often are used to describe the association between two variables.
Suppose that a university consisting of only two colleges, engineering and busi-
ness, admits 550 out of 1,400 students: 350 out of 800 male applicants are admit-
ted, but only 200 out of 600 female applicants are admitted. Such data com-
monly are displayed in the form of a table:®’

Table!l

Admissions by Gender

Decision Male Female Total

Admit 350 200 550

Deny 450 400 850
Total 800 600 1,400

The entries in Table 1 indicate that 350/800 = 44% of the men are admitted,
compared with only 200/600 = 33% of the women. The resulting selection ratio
(used by the Equal Employment Opportunity Commission (EEOC) in its “80%
rule”) % is 33/44 = 75%, meaning that, on average, women have 75% the chance
of admission that men have.% Another way to express the disparity is to subtract
the two percentages: 44 percentage points — 33 percentage points = 11
percentage points.

One difficulty with the simple difference, however, is that it is inevitably
small when the two percentages are both close to zero. If the selection rate for
men is 5% and that for women is 1%, the difference is only 4 percentage points;
yet, on average, women have only 1/5 the chance of men to be selected—and
that may be of real concern.

The ratio of the selection rates also has its problems. In the last example, if
the selection rates are 5% and 1%, the exclusion rates are 95% and 99%, respec-
tively. The corresponding ratio is 99/95 = 104%, meaning that women have, on
average, 104% the chance of men to be rejected. The underlying facts are the
same, of course, but this formulation sounds much less disturbing.100

97. A table of this sort also is called a cross-tabulation, or a contingency table. Table 1 is “two-by-two” be-
cause it has two rows and two columns, not counting rows or columns containing the totals.

98. The EEOC generally regards any procedure that se lects candidates from the least successful group at a
rate less than 80% of the rate for the most successful group as having an adverse impact. EEOC Uniform
Guidelines on Employee Selection Procedures, 29 C.F.R. § 1607.4(D) (1993).

99. The analogous statistic used in epidemiology is called the relative risk. A variation on this idea is the
relative difference in the proportions, which expresses the proportion by which the probability of selection is
reduced. Baldus & Cole, supra note 1, 8 5.1; Kairys et al., supra note 20, at 776, 789-90.

100. The Illinois Department of Employment Security tried to exploit this feature of the ratio in Council
31, Am. Fed'n of State, County & Mun. Employees v. Ward, 978 F.2d 373 (7th Cir. 1992). In January 1985,
the department laid off 8.6% of the blacks on its staff in comparison with 3.0% of the whites on its staff. Id. at
375. Recognizing that these layoffs ran afoul of the 80% rule if analyzed in terms of those selected to be laid
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Another statistic, the odds ratio, avoids this asymmetry. If 5% of male appli-
cants are admitted, the odds of a man being admitted are 5%/95% = 1/19; the
odds of a woman being admitted are 1%/99% = 1/99. The ratio of these quanti-
ties is (1/99)/(1/19) = 19/99. The odds ratio for rejection instead of acceptance is
the same, except that the order is reversed.191 Likewise, when the odds of an
admitted applicant being a man as opposed to the odds of a denied applicant be-
ing a man is considered, the odds ratio also becomes 99/19.

Although the odds ratio has desirable mathematical properties, 1% its meaning
may be less clear than that of the selection ratio or the simple difference. To
gauge the magnitude of the association implicit in a two-by-two table, any of the
statistics presented here may be considered.

Finally, to illustrate the point that association does not necessarily imply cau-
sation, consider again the hypothetical admission data in Table 1. Applicants
can be classified not only by gender and admission but also by the college to
which they applied, as in Table 2:

Table 2
Admissions by Gender and College
Engineering Business
Decision Male Female Male Female
Admit 300 100 50 100
Deny 300 100 150 300

The entries in Table 2 add up to the entries in Table 1. Yet, there is no associa-
tion between gender and admission in either college; men and women are ad-
mitted in identical percentages.

Combining two colleges with no association produces a university in which
gender is associated strongly with admission. The explanation for this paradox:
the business college, to which most of the women applied, is hard to get into;
the engineering college, to which most of the men applied, is easier to get into.
This example illustrates a common issue in discrimination cases: the effect of
other, often unreported, variables on an observed association. % When a study is

off—since 3.0%/8.6% = 35%, which is far less than 80%—the department instead presented the selection ratio
for retention. Id. at 375-76. Since black employees were retained at 91.4%/97.0% = 94% of the white rate, use
of a retention rate analysis showed no adverse impact. 1d. at 376. When a subsequent wave of layoffs was chal -
lenged as discriminatory, the department argued “that its retention rate analysis is the right approach to this
case and that . . [it] shows conclusively that the layoffs did not have a disparate impact,” because they com-
ported with the 80% rule. Id. at 379. The Seventh Circuit disagreed and, in reversing an order granting sum-
mary judgment to defendants on other grounds, left it to the district court on remand “to decide what method
of proof is most appropriate.” Id.

101. For women, the odds of rejection are 99 to 1; for men, 19 to 1. The ratio of these odds is 99/19.

102. See, e.g., Finkelstein & Levin, supra note 1, at 2-4; Joseph L. Fleiss, Statistical Methods for Rates and
Proportions 56-99 (2d ed. 1981); Steve Selvin, Statistical Analysis of Epidemiologic Data app. C (1991).

103. The example is taken from Moore, supra note 12, at 205-06, and inspired by more complex data on
graduate admissions in 1973 at the University of California at Berkeley analyzed in P. J. Bickel et al., Sex Bias
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said to have omitted important variables, some experts find it helpful to consider
how large a value of the omitted variable would be needed to explain away the
reported results. 104

2. Correlation coefficients

Two variables are positively correlated when their values tend to go up or down
together.1% Consider the scatter diagram for income and education in Figure 5.
As a rule, people with below-average educational levels also have below-average
incomes, while people with higher educational levels generally have higher
incomes. The association is positive. The correlation coefficient (usually de-
noted by r) is a single number that measures the strength of a linear association.
Figure 6 shows the values of r for several scatter diagrams.

Figure 6
The correlation coefficient measures the strength of linear association.

r=0.0 r=0.5 r=0.9

insert figure 6

A correlation coefficient of 0 indicates no linear association between the vari-
ables, while a coefficient of +1 indicates a perfect linear relationship: All the
dots in the scatter diagram fall on a straight line that slopes up. The maximum
value for r is +1. Sometimes, there is a negative association between two vari-
ables. Large values of one variable tend to go with small values of the other. The
age of a car and its fuel economy in miles per gallon provide an example.
Negative association is indicated by negative values for r. The extreme case is an

in Graduate Admissions: Data from Berkeley, 187 Science 398 (1975). See also Freedman et al., supra note 12,
at 16-19. Table 2 is an instance of Simpson’s Paradox. See generally Myra L. Samuels, Simpson’s Paradox and
Related Phenomena , 88 J. Am. Stat. Ass'n 81 (1993).

104. See, e.g., Joseph L. Gastwirth, Methods for Assessing the Sensitivity of Statistical Comparisons Used in
Title VIl Cases to Omitted Variables, 33 Jurimetrics J. 19 (1992); Joseph L. Gastwirth, Employment
Discrimination: A Statistician’s Look at Analysis of Disparate Impact Claims, 11 Law & Ineq. J. 151 (1992).

105. Many statistics and displays are available to investigate correlation. The most common are the corre-
lation coefficient and the scatter diagram.
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r of =1, indicating that all the points in the scatter diagram lie on a straight line
that slopes down.

Moderate associations are the general rule in the social sciences. Correlations
larger than about 0.7 are unusual. For example, the correlation between college
grades and first-year law school grades is under 0.3 at most law schools, while the
correlation between LSAT scores and first-year law school grades is generally
about 0.4.1% The correlation between heights of fraternal twins is about 0.5,
while the correlation between heights of identical twins is about 0.95. In Figure
5, the correlation between income and education is 0.43. The correlation coef-
ficient cannot capture all the underlying information. Several questions may
arise in this regard, and we consider them in turn.

a. Isthe association linear?

The correlation coefficient is designed to measure linear association. Figure 7
shows a strong nonlinear pattern with a correlation close to 0.

Figure 7
The correlation coefficient only measures linear association. The scatter
diagram shows a strong nonlinear association with a correlation coefficient of
nearly 0.

insert figure 7 here

b. Do outliers influence the coefficient?

The correlation coefficient can be distorted by outliers—a few points that are far
removed from the bulk of the data. The left-hand panel in Figure 8 shows that
one outlier (lower right-hand corner) can reduce a perfect correlation to nearly

106. Linda F. Wightman, Predictive Validity of the LSAT: A National Summary of the 1990-1992
Correlation Studies 10 (1993) (draft final report on data from 167 law schools); cf. Linda F. Wightman &
David G. Muller, An Analysis of Differential Validity and Differential Prediction for Black, Mexican
American, Hispanic, and White Law School Students 11-13 (1990). A combination of LSAT and undergradu -
ate grade point average has a higher correlation with first-year law school grades than either item alone. The
multiple correlation coefficient is typically about 0.5. Wightman, supra at 10.
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nothing. Conversely, the right-hand panel shows that one outlier (upper right-
hand corner) can raise a correlation from 0 to nearly 1.

Figure 8

The correlation coefficient can be distorted by outliers. The left-hand panel
shows an outlier (in the lower right-hand corner) that destroys a nearly perfect
correlation. The right-hand panel shows an outlier (in the upper right-hand
corner) that changes the correlation from 0 to nearly 1.

insert figure 8 here

c. Does a third variable influence the coefficient?

The correlation coefficient measures the association between two variables.
Investigators—and the courts—may be more interested in causation. However,
association is not necessarily the same as causation. Indeed, the association be-
tween two variables may be driven largely by a third variable that has been omit-
ted from the analysis. For instance, among schoolchildren, there is an associa-
tion between shoe size and vocabulary. However, learning more words does not
cause feet to grow bigger, and swollen feet do not make children more articu-
late. In this case, the third variable is easy to spot—age. In more realistic exam-
ples, the driving variable may be more difficult to identify.

Of course, in many other examples the association really does reflect causa-
tion, but a large correlation coefficient is not enough to warrant this conclusion.
Technically, third variables are called “confounders,” or “confounding vari-
ables.” The basic methods for dealing with a confounding variable involve con-
trolled experiments97 or the application, typically through a technique called
multiple regression, 108 of statistical controls.1%®

107. See supra §11.C.2.

108. Multiple regression analysis is discussed in Daniel L. Rubinfeld, Reference Guide on Multiple
Regression, in this manual.

109. For the reasons stated supra § 11.D, efforts to control confounding in observational studies are gener-
ally less convincing than randomized controlled experiments.

Statistics 367



3. Regression lines

The regression line can be used to describe a linear trend in the data. The regres-
sion line for income on education is shown in Figure 9. The height of the line
estimates the average income for a given educational level. For example, the av-
erage income for people with 8 years of education is estimated at $9,600, indi-
cated by the height of the line at 8 years; the average income for people with 16
years of education is estimated at about $23,200.

Figure 9
The regression line for income and education, and its estimates.

insert figure 9

Figure 10 repeats the scatter diagram for income and education (see Figure
5); the regression line is plotted too. In a general way, the line shows the average
trend of income as education increases. Thus, the regression line indicates the
extent to which a change in one variable (income) is associated with a change in
another variable (education).

a.  What are the slope and intercept?

The regression line can be described in terms of its slope and intercept.110 In
Figure 10, the slope is $1,700 per year. On average, each additional year of edu-
cation is associated with an additional $1,700 of income. Next, the intercept is
—$4,000. This is an estimate of the average income for people with 0 years of ed-
ucation. The estimate is not a good one, for such people are far from the center

110. The regression line, like any straight line, has an equation of the form y = nx + b. Here, m is the
slope, that is, the change in y per unit change in x. The slope is the same anywhere along the line.
Mathematically, that is what distinguishes straight lines from curves. The intercept b is the value of y when xis
0. The slope of a line is akin to the grade of a road; the intercept tells you the starting elevation. For example
(Figure 9), the regression line estimates an average income of $23,200 for people with 16 years of education.
This may be computed from the slope and intercept as follows:

($1,700 peryear) x 16 years — $4,000 = $27,200 - $4,000 = $23,200

368 Reference Manual on Scientific Evidence



of the diagram. In general, estimates based on the regression line become less
trustworthy as you move away from the bulk of the data.

Figure 10

Scatter diagram for income and education; the regression line indicates the
trend.

insert figure 10

b. What does the slope ignore?

The slope has the same limitations as the correlation coefficient in measuring
the degree of association.'* It only measures linear relationships, it may be in-
fluenced by outliers, and it does not control for the effect of other variables.
Although the slope of $1,700 per year of education presents each additional year
of education as having the same value, some years of schooling surely are worth
more and others less. Likewise, the association between education and income
graphed in Figure 10 is partly causal, but there are other factors to consider as
well, including family backgrounds. People with college degrees probably come
from more affluent and better educated families than people who drop out after
grade school. They have other advantages besides extra education. Such factors

111. In fact, the correlation coefficient is the slope of a regression line with the variables in standardized
form, that is, measured in terms of standard deviations away from the mean.
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must have some effect on income. This is why statisticians use the guarded lan-
guage of “on average” and “associated with.”112

¢.  What is the unit of analysis?

If the association between the characteristics of individuals is of interest, those
characteristics should be measured on individuals. Sometimes, however, the in-
dividual data are not available, but rates or averages are. “Ecological” correla-
tions are computed from such rates or averages; however, ecological correlations
generally overstate the strength of an association. An example makes the point.
The Bureau of the Census divides the United States into nine geographic areas.
The average income and average education can be determined for the men liv-
ing in each region. The correlation coefficient for these nine pairs of averages
turns out to be 0.7.113 However, geographic regions do not attend school and do
not earn incomes. People do. The correlation for income and education for men
in the United States is only about 0.4.114 The correlation for regional averages
overstates the correlation for individuals—a common tendency for such
ecological correlations. 115

Scatter diagrams and regression lines are used often in voting rights cases,
where the unit of analysis is the voting precinct. Each point in Figure 11 shows
data for a precinct in the 1982 Democratic primary election for auditor in Lee
County, South Carolina. The horizontal axis shows the percentage of registrants
who are white. The vertical axis shows the turnout rate for the white candi-
date. 6 The regression line is plotted too.

112. Many investigators would use multiple regression to isolate the effects of one variable on another—for
instance, the independent effect of education on income. Such efforts, like all attempts to infer causation from
observational data (see supra § I1), may run into problems. See David A. Freedman, As Others See Us: A Case
Study in Path Analysis, 12 J. Educ. Stat. 101 (1987).

113. See Freedman et al., supra note 12, at 140-41 (using 1988 Current Population Survey).

114. 1d. at 140 (using 1988 Current Population Survey).

115. The ecological correlation uses only the average figures, but within each region there is a lot of spread
about the average. The ecological correlation overlooks this individual variation.

116. By definition, this turnout rate equals the number of votes for the candidate, divided by the number of
registrants; the rate is computed separately for each precinct.
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Figure 11

Turnout rate for the white candidate plotted against the percentage of registrants
who are white. Precinct-level data, 1982 Democratic primary for auditor, Lee
County, South Carolina.

insert figure 11

Source: Data are from James W. Loewen & Bernard Grofman, Recent Developments in Methods Used in Vote
Dilution Litigation, 21 Urb. Law. 589, tbl. 1, at 591 (1989).

In this sort of diagram, the slope is often interpreted as the difference between
the white turnout rate and the black turnout rate for the white candidate; the in-
tercept would be interpreted as the black turnout rate for the white candidate.
However, the validity of such estimates is contested in the statistical literature.
The problem comes from the ecological nature of the regression, that is, making
the voting precinct the unit of analysis rather than the individual voter. 117

117. The secrecy of the ballot box prevents one from obtaining voting data on individuals, although exit
polls may provide some information. For further discussion of the problem of ecological regression in this con -
text, see Symposium, Statistical and Demographic Issues Underlying VVoting Rights Cases, 15 Evaluation Rev.
659 (1991); James W. Loewen & Bernard Grofman, Recent Developments in Methods Used in Vote Dilution
Litigation, 21 Urb. Law. 589, tbl. 1, at 591 (1989); Stephen P. Klein & David A. Freedman, Ecological
Regression in Voting Rights Cases , Chance, Summer 1993, at 38; Stephen P. Klein et al., Ecological Regression
Versus the Secret Ballot, 31 Jurimetrics J. 393 (1991); Arthur Lupia & Kenneth McCue, Why the 1980s
Measures of Racially Polarized Voting Are Inadequate for the 1990s , 12 Law & Pol’y 353 (1990).
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V. What Inferences Can Be Drawn from the Data?

The inferences that reasonably may be drawn from a study depend on the qual-
ity of the data. As discussed in section I, the data may not address the issue of in-
terest, or may be systematically in error, or may be difficult to interpret due to
confounding. We turn now to an additional concern—random error. 118 Are
patterns in the data the result of chance? Would a pattern wash out if more data
were collected? If measurements on individual units are unreliable, 119 the errors
may combine to produce a false pattern. Even if the measurements on indi-
vidual units are free from error, the sample may not be representative of the
population.

The laws of probability are central to analyzing random error. By applying
these laws, the statistician can assess the likely impact of chance error, using
standard errors, confidence intervals, significance probabilities, hypothesis tests,  or
posterior probability distributions. The following example illustrates the ideas. An
employer plans to use a standardized examination to select trainees from a pool
of 5,000 male and 5,000 female applicants. This total pool of 10,000 applicants
is the statistical population. Under Title VII of the Civil Rights Act, if the
proposed examination excludes a disproportionate number of women, the
employer must show that the exam is job related.120

To see whether there is disparate impact, the employer administers the exam
to a sample of 50 men and 50 women drawn at random from the population of
job applicants. In the sample, 29 of the men but only 19 of the women pass; the
sample pass rates are therefore 29/50 = 58% and 19/50 = 38%. The employer
announces that it will use the exam anyway, and several applicants bring an ac-
tion under Title VII.

Disparate impact seems clear. The difference in sample pass rates is 20 per-
centage points: 58% — 38% = 20%. The employer argues, however, that the dis-
parity could just reflect random error. After all, only a small number of people

118. Random error is also called sampling error , chance error, or statistical error. Econometricians use the
parallel concept of random disturbance term.

119. See supra 8 11.A.1.

120. The seminal case is Griggs v. Duke Power Co., 401 U.S. 424, 431 (1971). The requirements and
procedures for the validation of tests can go beyond a simple showing of job-relatedness. See, e.g., Richard R.
Reilly, Validating Employee Selection Procedures , in Statistical Methods in Discrimination Litigation, supra
note 7, at 133; Michael Rothschild & Gregory J. Werden, Title VII and the Use of Employment Tests: An
Ilustration of the Limits of the Judicial Process, 11 J. Legal Stud. 261 (1982).
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took the test, and the sample just may have happened to include disproportion-
ate numbers of high-scoring men and low-scoring women. Clearly, even if there
was no overall difference in pass rates for male and female applicants, in some
samples men will outscore women. A statistician then might be asked to address
such topics as the following:

- Estimation . Plaintiffs use the difference of 20 percentage points between
the sample men and women to estimate the disparity between all male
and female applicants. How good is this estimate? Precision can be ex-
pressed using the standard error or a confidence interval.

- Statistical Significance . Suppose the defendant is right—in the population
of all 5,000 male and 5,000 female applicants, the pass rates are equal;
there is no disparate impact. How likely is it that a random sample of 50
men and 50 women will produce a disparity of 20 percentage points or
more? This chance is known as a p-value. Statistical significance is deter-
mined by reference to the p-value, and hypothesis testing is the technique
for computing p-values or determining statistical significance. 12

- Posterior probability . Given the observed disparity of 20 percentage points
in the sample, what is the probability that—in the population as a whole—
men and women have equal pass rates? This question is of direct interest
to the courts. However, within the framework of classical statistical theory,
such a posterior probability has no meaning.122 For a subjectivist statisti -
cian, posterior probabilities may be computed using Bayes' rule .

A. Estimation
1. What estimator should be used?

An estimator is a statistic computed from sample data and used to estimate a
numerical characteristic of the population. For example, the difference in pass
rates for a sample of men and women is used to estimate the corresponding dis-
parity in the population of all applicants. In our sample, the pass rates were 58%
and 38%; the difference in pass rates for the whole population is estimated to be
20 percentage points: 58% — 38% = 20%. In more complex problems, statisti-
cians may have to choose among several estimators. Generally, estimators that
tend to make smaller errors are preferred. However, this idea can be made pre-
cise in more than one way,2 leaving room for judgment in selecting an esti-
mator.

121. Hypothesis testing is also called significance testing.

122. This classical framework is also called “objective” or “frequentist.” Contrast with the subjectivist
approach; see infra § IV.C.

123. Furthermore, reducing error in one context may increase error in other contexts; there may also be a
trade-off between accuracy and simplicity.
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2. What is the standard error?

The estimate of 20 percentage points is likely to be off, at least by a little, due to
random error. The standard error gives the likely magnitude of this random er-
ror. 12* Whenever possible, an estimate should be accompanied by its standard
error.15 In our example, the standard error is about 10 percentage points: The
estimate of 20 percentage points is likely to be off by about 10 percentage points
or so, in either direction.1% Since the pass rates for all 5,000 men and 5,000
women are unknown, we cannot say exactly how far off the estimate is going to
be, but 10 percentage points gauges the likely magnitude of the error.

Confidence intervals make the idea more precise. Statisticians who say the
population difference falls within plus-or-minus 1 standard error of the sample
difference would be correct about 68% of the time. To write this more com-
pactly, we can abbreviate standard error as SE. A 68% confidence interval is the
range

estimate —1 SE to estimate + 1 SE

In our example, the 68% confidence interval goes from 10 to 30 percentage
points. If a higher confidence level is wanted, the interval must be widened. The
95% confidence interval is about

estimate —2 SE to estimate + 2 SE

This runs from 0 to 40 percentage points. Although 95% confidence intervals are
used commonly, there is nothing special about 95%. For example, a 99.7% con-
fidence interval is about

estimate — 3 SE to estimate + 3 SE
This stretches from —10 to 50 percentage points. 1%

124. Standard errors are also called standard deviations, and courts seem to prefer the latter term, as do
many authors. See infra notes 145, 149.

125. The standard error can also be used to measure reproducibility of estimates from one random sample
to another. See infra the Appendix.

126. The standard error depends on the pass rates of men and women in the sample and on the size of the
sample. Chance error is smaller for larger samples, so the standard error goes down as sample size goes up. The
Appendix gives the formula for computing the standard error of a difference in rates based on random samples.
Generally, the formula for the standard error must take into account the method used to draw the sample and
the nature of the estimator. Statistical expertise is needed to choose the right formula.

127. A negative value, such as -10%, indicates that for the whole population, more women than men are
estimated to pass the test. The 68%, 95%, and 99.7% come from the normal curve. See infra the Appendix.
When there are samples of reasonable size, an estimator like the pass rate difference will follow the normal
curve fairly well. Statisticians call this the central limit theorem . The probability that our estimator will be
within 2 standard errors of the true population figure is approximately equal to the area under the normal
curve between -2 and +2. This area is about 95%. For a more complete description of the normal curve and its
use in large samples, see, e.g., Freedman et al., supra note 12, at 73-89, 282-302. Of course, many estimators
do not follow the normal curve, and other procedures then must be used to obtain confidence intervals.
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A confidence interval is based on the standard error. If the standard error is
small, the estimate probably is close to the truth. If the standard error is large,
the estimate may be seriously wrong.

3. What do standard errors and confidence intervals mean?

An estimate based on a sample will differ from the exact population value due to
random error; the standard error measures the likely size of the random error.
Confidence intervals are a technical refinement, and confidence is a term of
art.128 For a given confidence level, a narrower interval indicates a more precise
estimate. For a given sample size, increased confidence can be attained only by
widening the interval. A high confidence level alone means very little, but a
high confidence level resulting in a small interval is impressive.1? It indicates
that the random error in the sample estimate is low.

Both the standard error and the confidence interval are derived using a par-
ticular model of statistical error. A statistical model expresses the way random er-
ror works and generally contains parameters that characterize the population
from which the samples were drawn. 13 The data in our example came from a
random sample, and that guaranteed the validity of the statistical calculations. 131

128. In the standard frequentist theory of statistics, one cannot make probability statements about popula-
tion characteristics. See, e.g ., Freedman et al., supra note 12, at 351-53; infra § IV.B.1. Because of the limited
technical meaning of confidence, it has been argued that the term is misleading and should be replaced by a
more neutral one, such as frequency coefficient, in courtroom presentations. David H. Kaye, Is Proof of
Statistical Significance Relevant? , 61 Wash. L. Rev. 1333, 1354 (1986).

129. Conversely, a broad interval signals that random error is substantial. In Cimino v. Raymark Indus.,
Inc., 751 F. Supp. 649 (E.D. Tex. 1990), the district court drew certain random samples from more than 6,000
pending ashestos cases, tried these cases, and used the results to estimate the total award to be given to all
plaintiffs in the 6,000 cases. The court then held a hearing to determine whether the samples were large
enough to provide accurate estimates. Id. at 664. The court’s expert, an educational psychologist, testified that
the estimates were accurate because the samples matched the population on such characteristics as race and
the percentage of plaintiffs still alive. Id. However, the matches occurred only in the sense that population
characteristics fell within very broad 99% confidence intervals computed from the samples. The court thought
that matches within the 99% confidence intervals proved more than matches within 95% intervals. Id.
Unfortunately, this is backwards. It is not very impressive to be correct in a few instances with a 99% confi-
dence interval, because, by definition, such intervals are broad enough to ensure coverage 99% of the time. Cf.
Michael J. Saks & Peter David Blanck, Justice Improved: The Unrecognized Benefits of Aggregation and
Sampling in the Trial of Mass Torts , 44 Stan. L. Rev. 815 (1992).

130. In our example, one parameter is the pass rate of the 5,000 male applicants; another parameter is the
pass rate of the 5,000 female applicants. These two parameters determine the probabilities of observing the var-
ious possible values for the sample difference, according to a set of mathematical equations. The statistical
problem consists of working backwards from the sample data to the population parameters.

When the parameters are known, the analyst may use the model to find the probability of an observed out-
come (or one like it). This approach is common in cases alleging discrimination in the selection of jurors. Eg.,
Castaneda v. Partida, 430 U.S. 482, 496 (1977); David H. Kaye, Statistical Evidence of Discrimination in Jury
Selection, in Statistical Methods in Discrimination Litigation, supra note 7, at 13. Cf. Hazelwood Sch. Dist. v.
United States, 433 U.S. 299, 311 n.17 (1977) (computing probabilities of selecting black teachers). Although
such problems in applied probability theory are not explicitly treated in this reference guide, the Appendix pre-
sents some relevant calculations.

131. Partly because the Supreme Court used models giving rise to variables that are approximately normal
in Hazelwood and Castaneda, courts and attorneys sometimes are skeptical of models and analyses that pro-
duce other types of random variables. See, e.g ., EEOC v. Western Elec. Co., 713 F.2d 1011 (4th Cir. 1983),
discussed in David H. Kaye, Ruminations on Jurimetrics: Hypergeometric Confusion in the ~ Fourth Circuit, 26
Jurimetrics J. 215 (1986). Butcf. Branion v. Gramly, 855 F.2d 1256 (7th Cir. 1988) (questioning an apparently
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The choice of an appropriate model in other situations may be less obvious. 132
When a model does not describe well the process giving rise to the data, the
estimate and its standard error are less probative. 133

Furthermore, the standard error and the confidence interval generally ignore
systematic errors, such as selection bias or nonresponse bias.134 For example, one
court—reviewing studies of whether a particular drug causes birth defects—
observed that mothers of children with birth defects may be more likely to re-
member taking a drug during pregnancy than women with normal children. 13
This selective recall would bias comparisons between samples from the two
groups of women. The standard error for the estimated difference in drug usage
between the two groups ignores this bias, as does the confidence interval. 136

arbitrary assumption of normality), cert. denied , 490 U.S. 1008 (1989), discussed in David H. Kaye, Statistics for
Lawyers and Law for Statistics, 89 Mich. L. Rev. 1520 (1991). Whether a given variable is normally distributed
is an empirical or statistical question, not a matter of law. That a particular model has been used in a previous
case may be of limited value in deciding whether it is appropriate in the case at bar. See generally Statistical
Methods in Discrimination Litigation, supra note 7, at iii; Laurens Walker & John Monahan, Social Facts:
Scientific Methodology as Legal Precedent, 76 Cal. L. Rev. 877 (1988).

132. For examples of legal interest, see, eg., Mary W. Gray, Can Statistics Tell Us What We Do Not Want
to Hear?: The Case of Complex Salary Structures , 8 Stat. Sci. 144 (1993); Arthur P. Dempster, Employment
Discrimination and Statistical Science , 3 Stat. Sci. 149 (1988). One statistician describes the issue as follows:

[A] given data set can be viewed from more than one perspective, can be represented by
a model in more than one way. Quite commonly no unique model stands out as “true”
or correct; justifying so strong a conclusion might require a depth of knowledge that is
simply lacking. So it is not unusual for a given data set to be analyzed in several appar-
ently reasonable ways. If conclusions are qualitatively concordant, that is regarded as
grounds for placing additional trust in them. But more often, only a single model is ap-
plied, and the data are analyzed in accordance with it . . . .

Desirable features in a model include (i) tractability, (ii) parsimony, and (iii) realism.
That there is some tension among these is not surprising.

Tractability. A model that is easy to understand and to explain is tractable in one
sense. Computational tractability can also be an advantage, though with cheap comput-
ing available not too much weight can be given to it.

Parsimony . Simplicity, like tractability, has a direct appeal, not wisely ignored—but
not wisely over-valued either. If several models are plausible and more than one of them
fits adequately with the data, then in choosing among them, one criterion is to prefer a
model that is simpler than the other models.

Realism . . . . First, does the model reflect well the actual . . . [process that generated
the data]? This question is really a host of questions, some about the distributions of the
random errors, others about the mathematical relations among the [variables and] pa-
rameters. The second aspect of realism is sometimes called robustness: If the model is
false in certain respects, how badly does that affect estimates, significance test results,
etc., that are based on the flawed model?

Lincoln E. Moses, The Reasoning of Statistical Inference, in Perspectives on Contemporary Statistics, supra
note 22, at 107, 117-18.

133. 1t still may be helpful to consider the standard error, perhaps as a minimal estimate for statistical un-
certainty.

134. For a discussion of such systematic errors, see supra § I1.B.

135. Brock v. Merrell Dow Pharmaceuticals, Inc., 874 F.2d 307, 311-12 (5th Cir.), modified , 884 F.2d 166
(5th Cir. 1989), cert. denied, 494 U.S. 1046 (1990).

136. In Brock , the court held that the confidence interval took account of bias (in the form of selective re-
call) as well as random error. 874 F.2d at 311-12. With respect, we disagree. Even if sampling error were
nonexistent, which would be the case if one could interview every woman who had a child in the period that
the drug was available, selective recall would produce a difference in the percentages of reported drug expo-
sure between mothers of children with birth defects and those with normal children. In this hypothetical situa-
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Likewise, the standard error does not address problems inherent in using
convenience samples rather than random samples. 37

B. p-valuesand Hypothesis Tests
1. What is the p-value?

In our example, 50 men and 50 women were drawn at random from 5,000 male
and 5,000 female applicants. An exam was administered to this sample, and in
the sample, the pass rates for the men and women were 58% and 38%, respec-
tively; the sample difference in pass rates was 58 — 38 = 20 percentage points.
The p-value answers the following question: If the pass rates among all 5,000
male applicants and 5,000 female applicants were identical, how probable
would it be to find a discrepancy as large as or larger than the 20 percentage
point difference observed in our sample? The question is delicate, because the
pass rates in the population are unknown—that is why a sample was taken in the
first place.

The assertion that the pass rates in the population are the same is called the
null hypothesis . The null hypothesis asserts that there is no difference between
men and women in the whole population—differences in the sample are due to
the luck of the draw. The p-value is the probability of getting data as extreme as,
or more extreme than, the actual data, given that the null hypothesis is true:

p = Pr (extreme data | null hypothesis in model)

If the null hypothesis is true, there is only a 5% chance of getting a difference in
the pass rates of 20 percentage points or more.3® The p-value for the observed
discrepancy is 5%, or .05.

In such examples, small p-values are evidence of disparate impact, while large
p-values are evidence against disparate impact. Regrettably, multiple negatives
are involved here. The null hypothesis asserts no difference in the population—
that is, no disparate impact. Small p-values argue against the null hypothesis;
that is, small p-values argue there is disparate impact. Generally, by indicating
that the magnitude of the observed difference is improbable if the null hypothe-
sis is true, small p-values undermine the null hypothesis. The smaller the p-
value for a given study, the more surprising it would be to see such differences
under the null hypothesis. Conversely, large p-values indicate that the data are
compatible with the null hypothesis.

However, since p is calculated by assuming the null hypothesis, the p-value
cannot give the chance that this hypothesis is true. The p-value merely gives the

tion, the standard error would vanish. Therefore, the standard error can disclose nothing about the impact of
selective recall.

137. See supra § 11.B.1.

138. See infra the Appendix.
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chance of getting evidence against the null hypothesis as strong or stronger than
the evidence at hand—assuming the null hypothesis is correct. No matter how
many samples are obtained, the null hypothesis is either always right or always
wrong. Chance affects the data, not the hypothesis. With the frequency interpre-
tation of chance, there is no meaningful way to assign a numerical probability to
the null hypothesis, or to any alternative hypothesis, for that matter.139

Computing p-values requires statistical expertise. Many methods are avail-
able, but only some will fit the occasion.140 Sometimes standard errors will be
part of the analysis, while other times they will not be. Sometimes a difference of
2 standard errors will imply a p-value of about .05, other times it will not. In
general, the p-value depends on the model and its parameters, the size of the
sample, and the sample statistics.

Because the p-value is affected by sample size, it does not measure the extent
or importance of a difference.1* Suppose, for instance, that the 5,000 male and
5,000 female job applicants would differ in their pass rates, but only by 1
percentage point. This difference might not be enough to make a case of dis-
parate impact, but by including enough men and women in the sample, the
data could be made to have an impressively small p-value. This p-value would
confirm that the 5,000 men and 5,000 women have different pass rates, but it
would not show the difference is substantial.

Likewise, in considering whether two quantities are correlated# in a popu-
lation from which a random sample has been drawn, the p-value depends on the
correlation in the sample as well as on the number of data points. Statistical sig-
nificance may result from a small correlation and a large number of points. In
short, the p-value does not measure the strength or importance of an associa-
tion. 143

139. See, e.g., The Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 196 —
98; David H. Kaye, Statistical Significance and the Burden of Persuasion, Law & Contemp. Probs., Autumn
1983, at 13. Some opinions suggest a contrary view. E.g., Fudge v. Providence Fire Dep't, 766 F.2d 650, 658
(1st Cir. 1985) (“Widely accepted statistical techniques have been developed to determine the likelihood an
observed disparity resulted from mere chance.”); Capaci v. Katz & Besthoff, Inc., 711 F.2d 647, 652 (5th
Cir. 1983) (“the highest probability of unbiased hiring was 5.367 x 107 "), cert. denied, 466 U.S. 927 (1984).
Such statements appear to confuse the probability of the kind of outcome observed, which is computed under
some model of chance, with the probability that chance is the explanation for the outcome. (In scientific
notation, 102 is one followed by twenty zeros, and 1020 is the reciprocal of that number. The proverbial “one
in a million” is more dryly expressed as 1 x 10™° )

140. See, e.g ., Thomas J. Sugrue & William B. Fairley, A Case of Unexamined Assumptions: The Use and
Misuse of the Statistical Analysis of Castaneda/Hazelwood in Discrimination Litigation, 24 B.C. L. Rev. 925
(1983).

141. Some opinions seem to equate small p-values with gross or substantial disparities. Eg., Craik
v. Minnesota St. Univ. Bd., 731 F.2d 465, 479 (8th Cir. 1984). Other courts have emphasized the need to de-
cide whether the underlying sample statistics reveal that a disparity is large. Eg., McCleskey v. Kemp, 753
F.2d 877, 892-94 (11th Cir. 1985), affd, 481 U.S. 279 (1987).

142. See supra § I11.F.2.

143. The conventional procedures used to compute a p-value for a correlation depend on the normality of
the underlying process for generating the data. The scatter diagram itself gives some useful clues as to whether
this assumption is satisfied. Basically, the scatter diagram should be roughly circular or oval in shape. The dia-
grams in Figure 6 confirm the assumption of normality. The diagram in Figure 5 is incompatible with the as-
sumption, because the cloud of points widens as one moves from left to right along the horizontal axis. In the

Statistics 379



2. Is a difference statistically significant?

Statistical significance is determined by comparing a p-value to a preestablished
value, the significance level .1 If an observed difference is in the middle of the
distribution that would be expected under the null hypothesis, there is no sur-
prise. The sample data are of the type that often would be seen when the null
hypothesis is true: The difference is not significant, and the null hypothesis can-
not be rejected. Conversely, if the sample difference is far from the expected
value—according to the null hypothesis—the sample is unusual: The difference
is significant, and the null hypothesis is rejected. In our example, the 20 per-
centage point difference in pass rates for the men and women in the sample,
whose p-value was about .05, would be significant at the .05 level. If the thresh-
old were set lower, for instance at .01, the result would not be significant.

In practice, statistical analysts use certain preset significance levels—typically
.05 or .01.5 The .05 level is the most common in social science, and an analyst
who speaks of “significant” results without specifying the threshold probably is
using this level.1 An unexplained reference to “highly significant” results
probably means that p is less than .01.147

Since the term “significant” is merely a label for certain kinds of p-values, it is
subject to the same limitations as are p-values themselves. Significant differences
are evidence that something besides random error is at work, but they are not ev-
idence that this “something” is legally or practically important. Statisticians dis-
tinguish between statistical and practical significance to make the point. When

jargon of the field, Figure 5 shows heteroscedasticity, while the diagrams in Figure 6 are homoscedastic. Figures
7 and 8 are also incompatible with the normality assumption; Figure 7 shows a strong nonlinear pattern, while
Figure 8 has outliers. Under other circumstances, too, procedures may be available to test the ade quacy of a
model’s assumptions. See, e.g ., David C. Hoaglin, Diagnostics , in Perspectives on Contemporary Statistics,
supra note 22, at 123; David A. Belsley et al., Regression Diagnostics: ldentifying Influential Data and Sources
of Collinearity (1980). Sometimes, however, assumptions are tested only by introducing other assumptions that
are even more obscure.

144. Statisticians use the Greek letter a (alpha) to denote the significance level; a gives the chance of ob-
taining a significant result, assuming that the null hypothesis is true. Thus, a represents the chance of what is
variously termed a false rejection of the null hypothesis, a type | error, a false positive, or a false alarm. For ex-
ample, suppose a = 5%. If investigators do many studies, and the null hypothesis happens to be true in each
case, then about 5% of the time they would obtain significant results—and falsely reject the null hypothesis.

145. The Supreme Court implicitly referred to this practice in Castaneda v. Partida, 430 U.S. 482, 496
n.17 (1977), and Hazelwood Sch. Dist. v. United States, 433 U.S. 299, 311 n.17 (1977). In these footnotes, the
Court described the null hypothesis as “suspect to a social scientist” when a statistic from “large samples” falls
more than “two or three standard deviations” from its expected value under the null hypothesis. Although the
Court did not say so, these differences produce p-values of about .05 and .01 when the statistic is normally dis-
tributed. The Court’s standard deviation is our standard error.

146. Some have intimated that data not significant at the .05 level should be disregarded. This view is
challenged in, eg ., Kaye, supra note 128, at 1344 & n.56, 1345. But see Paul Meier et al., What Happened in
Hazelwood: Statistics, Employment Discrimination, and the 80% Rule, 1984 Am. B. Found. Res. J. 139, 152.

147. Merely labeling results as significant or not significant without providing the underlying information
that goes into this conclusion is of limited value. See, e.g., John C. Bailar, 11l & Frederick Mosteller,
Guidelines for Statistical Reporting in Articles for Medical Journals: Amplifications and Explanations, in
Medical Uses of Statistics, supra note 44, at 313, 316.
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practical significance is lacking—when the size of a disparity or correlation is
negligible—there is no reason to worry about statistical significance. 48

As noted above, it is easy to mistake the p-value for the probability that there is
no difference. Likewise, if results are significant at the .05 level, it is tempting to
conclude that the null hypothesis has only a 5% chance of being correct. #® This
temptation should be resisted. From the frequentist perspective, statistical
hypotheses are either true or false—probabilities govern the samples, not the
models and hypotheses. The significance level tells us what is likely to happen
when the null hypothesis is correct; it cannot tell us the probability that the hy-
pothesis is true. Significance comes no closer to expressing the probability that
the null hypothesis is true than does the underlying p-value.150

3. Questions about hypothesis tests
a.  What is the power of the test?

When a p-value is high, findings are not significant, and the null hypothesis is
not rejected. There are at least two possible explanations:

1. There is no difference in the population—the null hypothesis is true; or

2. There is some difference in the population—the null hypothesis is false—
but, by chance, the data are of the kind expected under the null
hypothesis. 151

If the power of a statistical study is low, the second is a reasonable explanation for
the data. Power is the chance that a statistical test will declare an effect when
there is an effect to declare. 152 This chance depends on the size of the effect and

148. E.g., Waisome v. Port Auth., 948 F.2d 1370, 1376 (2d Cir. 1991) (“[T]hough the disparity was found

to be statistically significant, it was of limited magnitude . . . .”) (citations omitted).
149. E.g., id. at 1376 (“Social scientists consider a finding of two standard deviations sig nificant, meaning
there is about one chance in 20 that the explanation for a deviation could be random . . ..”); Rivera v. City of

Wichita Falls, 665 F.2d 531, 545 n.22 (5th Cir. 1982) (“A variation of two standard deviations would indicate
that the probability of the observed outcome occurring purely by chance would be approxi mately five out of
100; that is, it could be said with a 95% certainty that the outcome was not merely a fluke.”); Vuyanich v.
Republic Nat'l Bank, 505 F. Supp. 224, 272 (N.D. Tex. 1980) (“[I]f a 5% level of significance is used, a
sufficiently large t-statistic for the coefficient indicates that the chances are less than one in 20 that the true
coefficient is actually zero.”), vacated, 723 F.2d 1195 (5th Cir.), cert. denied, 469 U.S. 1073 (1984).

150. For more discussion, see Kaye, supra note 139.

151. Tests also may reject—or fail to reject—because the statistical model does not fit the situation. See in -
fra § IV.B.3.e.

152. More precisely, power is the probability of rejecting the null hypothesis when the alternative hypoth-
esis is right. Typically, this depends on the values of unknown parameters, as well as on the preset significance
level (a). See supra notes 130, 144. Therefore, no single number gives the power of the test. The expert can
specify particular values for the parameters and significance level and compute the power of the test accord-
ingly. See infra the Appendix for an example. Power may be denoted by the Greek letter (3 (beta).

Accepting the null hypothesis when the alternative is true is known as a false acceptance of the null hy-
pothesis, a type |1 error, a false negative, or a missed signal. The chance of a false negative may be computed
from the power, as 1 — [3. Frequentist hypothesis testing keeps the risk of a false positive to a specified level
(such as a = .05) and then tries to minimize the chance of a false negative (1 — () for that value of a.
Regrettably, the notation is in some degree of flux; many authors use 3 to denote the chance of a false negative;
then, it is B that should be minimized.
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the size of the sample. Discerning subtle differences in the population requires
large samples.

When a study with low power fails to show a significant effect, one should not
treat the negative result as strong proof that there is no effect. The study is de-
scribed more fairly as inconclusive than as negative.153 In contrast, when stud ies
have a good chance of detecting a meaningful association, failure to obtain
significant findings can be persuasive evidence that there is no effect to be
found. 154

b. One-tailed versus two-tailed tests

In many cases, a statistical test can be either one-tailed or two-tailed . The second
method will generally produce a p-value twice as big as the first method. Since
small p-values are evidence against the null hypothesis, a one-tailed test seems to
produce stronger evidence than a two-tailed test. However, this difference is
largely illusory. 15

Some courts have expressed a preference for two-tailed tests, 1% but a rigid rule
is not required if p-values and significance levels are used as clues rather than as

Some commentators have claimed that the cutoff for significance should be chosen to equalize the chance
of a false positive and a false negative, on the ground that this criterion corresponds to the “more-probable-
than-not” burden of proof. Unfortunately, the argument is fallacious because a and 3 apply to data, not hy-
potheses. See supra § IV.B.1.

153. In our pass rate example, with o = .05, power to detect a difference of 10 percentage points between
the male and female job applicants is only about 1/6. See infra the Appendix. Not seeing a “significant” differ -
ence therefore provides only weak proof that the difference between men and women is smaller than 10 per-
centage points. We prefer estimates accompanied by standard errors to tests, because the former seem to make
the state of the statistical evidence clearer: The estimated difference is 20 + 10 percentage points, indicating
that a difference of 10 percentage points is quite compatible with the data.

154. Some formal procedures are available to aggregate results across studies. S In e Paoli R.R. Yard
PCB Litig., 916 F.2d 829 (3d Cir. 1990), cert. denied sub nom. General Elec. Co. v. Knight, 499 U.S. 961
(1991). In principle, the power of the collective results will be greater than the power of each study. See, e.g.,
The Handbook of Research Synthesis 226-27 (Harris Cooper & Larry V. Hedges eds., 1994); Larry V. Hedges
& Ingram OIKin, Statistical Methods for Meta-Analysis (1985); Jerome P. Kassirer, Clinical Trials and Meta -
Analysis: What Do They Do for Us?, 327 New Eng. J. Med. 273, 274 (1992) (“[Clumulative meta-analysis rep -
resents one promising approach.”); National Research Council, Combining Information: Statistical Issues and
Opportunities for Research (1992). Unfortunately, these procedures have their own limitations. Eg., Diana
Petitti, Meta-Analysis, Decision Analysis, Cost-Effectiveness Analysis in Medicine: Methods for Quantitative
Synthesis of Information (1994); Michael Oakes, Statistical Inference: A Commentary for the Social and
Behavioral Sciences 157 (1986) (“a retrograde development”); Charles Mann, Meta-Analysis in the Breech ,
249 Science 476 (1990).

155. In our pass rate example, the p-value of the test is approximated by a certain area under the normal
curve. The one-tailed procedure uses the tail area under the curve to the right of 2, giving p =.025. The two-
tailed procedure contemplates the area to the left of -2, as well as the area to the right of 2. Now there are two
tails, and p = .05. According to formal statistical theory, the choice between one tail and two sometimes can be
made by considering the exact form of the alternative hypothesis. The null hypothesis held that pass rates were
equal for men and women in the whole population of applicants. The alternative hypothesis may exclude a
priori the possibility that women have a higher pass rate and hold that more men will pass than women. This
asymmetric alternative suggests a one-tailed test. Conversely, the alternative hypothesis may simply be that pass
rates for men and women in the whole population are unequal. This symmetric alternative admits the possibil -
ity that women may score higher than men and points to a two-tailed test. See, e.g. , Freedman et al., supra note
12, at 495-98 .

156. See, eg., Baldus & Cole, supra note 1, at 308 n.35a (1980 & Supp. 1987); The Evolving Role of
Statistical Assessments as Evidence in the Courts, supra note 1, at 38-40 (citing EEOC v. Federal Reserve
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mechanical devices for deferring to or dismissing statistical proofs. One-tailed
tests make it easier to reach a threshold like .05, but if .05 is not used as a magic
line, then the choice between one tail and two is less important—as long as the
choice and its effect on the p-value are made explicit. 5

c. How many tests have been performed?

Repeated applications of significance testing complicate the interpretation of a
significance level. If enough studies are conducted, random error almost guaran-
tees that some will yield significant findings, even when there is no real effect. 158
Consider the problem of deciding whether a coin is biased. The probability that
a fair coin will produce ten heads when tossed ten times is (1/2)10 = 1/1,024.
Observing ten heads in the first ten tosses, therefore, would be strong evidence
that the coin is biased. Nevertheless, if a fair coin is tossed a few thou sand times,
it is likely that at least one string of ten consecutive heads will appear. The test—
looking for a run of ten heads—has been repeated far too often. 15°

The problem of multiple testing can affect statistical models with many possi-
ble equations and parameters. Almost any large data set—even pages from a
table of random digits—will contain some unusual pattern that can be uncov-
ered by a diligent search. Having detected the pattern, the analyst can perform a
statistical test for it, blandly ignoring the search effort. Statistical significance is
bound to follow. Ten heads in the first ten tosses means one thing; a run of ten
heads in a few thousand tosses of a coin means another.

There are statistical methods for coping with multiple looks at the data, which
permit the calculation of meaningful p-values in certain cases.'© However, no
general solution is available, and the existing methods would be of little help in
the typical case where analysts have run through a variety of regression models to
arrive at the one considered the most satisfactory. In these situations, courts

Bank, 698 F.2d 633 (4th Cir. 1983), rev'd on other grounds sub nom. Cooper v. Federal Reserve Bank, 467 U.S.
867 (1984)); Kaye, supra note 128, at 1358 n.113; David H. Kaye, The Numbers Game: Statistical Inference in
Discrimination Cases , 80 Mich. L. Rev. 833 (1982) (citing Hazelwood Sch. Dist. v. United States, 433 U.S.
299 (1977)). An argument for one-tailed tests is made by Richard Goldstein, Two Types of Statistical Errors in
Employment Discrimination Cases, 26 Jurimetrics J. 32 (1985).

157. One-tailed tests at the .05 level are viewed as weak evidence—no weaker standard is commonly used
in the technical literature. Butsee Richard Lempert, Statistics in the Courtroom: Building on Rubinfeld, 85
Colum. L. Rev. 1098, 1099 (1985) (“[T]he values of social science are not the values of law.”).

158. Since research that fails to uncover significance is not usually published, reviews of the literature may
produce an unduly large number of studies finding statistical significance. Eg., Stuart J. Pocock et al.,
Statistical Problems in the Reporting of Clinical Trials: A Survey of Three Medical Journals , 317 New Eng. J.
Med. 426 (1987).

159. For advice on spotting comparable abuses in biomedical studies, see James L. Mills, Data Torturing,
329 New Eng. J. Med. 1196 (1993).

160. See, e.g ., Yosef Hochberg & Ajit C. Tamhane, Multiple Comparison Procedures (1987); Rupert G.
Miller, Jr., Simultaneous Statistical Inference (2d ed. 1981); Peter H. Westfall & S. Stanley Young,
Resampling-Based Multiple Testing: Examples and Methods for p Value Adjustment (1993); Joseph L.
Gastwirth & Samuel W. Greenhouse, Estimating a Common Relative Risk: Application in Equal Employment,
82 J. Am. Stat. Ass’n 38 (1987); Robert Follett & Finis Welch, Testing for Discrimination in Employment
Practices, Law & Contemp. Probs., Autumn 1983, at 171; Kaye, supra note 130, at 13.
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should not be overly impressed with claims that estimates are significant.
Instead, they should be asking how analysts developed their models.161

d. What are the interval estimates?

Statistical significance depends on the p-value, and the p-value depends on
sample size. Therefore, a significant effect may be small. Conversely, an effect
that is not significant may be large.162 By inquiring into the magnitude of an
effect, courts can avoid being misled by p-values. To focus attention where it be-
longs—on the actual size of an effect and the reliability of the statistical analy-
sis—the court may ask for an interval estimate.163 Seeing a plausible range of
values for the quantity of interest enables the court to decide whether this quan-
tity is large or small and to consider the statistical uncertainty in the estimate.

In our example, the 95% confidence interval for the difference in the pass
rates of men and women ranged from 0 to 40 percentage points. Our best esti-
mate is that the pass rate for men is 20 percentage points higher than that for
women; and the difference may plausibly be as little as 0 or as much as 40 per-
centage points. The p-value does not yield this information. The confidence in-
terval contains the information provided by a significance test—and more. 164 For
instance, significance at the .05 level can be read off the 95% confidence in-
terval. In our example, 0 is at the extreme edge of the 95% confidence interval;
thus, we have significant evidence that the true difference in pass rates between
male and female applicants is not 0. But there are values very close to 0 inside
the interval. This may help us consider whether the difference is practically sig-
nificant.

In contrast, suppose a significance test fails to reject the null hypothesis. The
confidence interval may prevent the mistake of thinking there is positive proof
for the null hypothesis. To illustrate, let us change our example slightly: 29 men
and 20 women passed the test. The 95% confidence interval goes from -2 to 38
percentage points. Because a difference of 0 falls within the 95% confidence in-
terval, the null hypothesis—that the true difference is 0—cannot be rejected at
the .05 level. However, the interval extends to 38 percentage points, indicating

161. See, e.g ., Persi Diaconis, Theories of Data Analysis: From Magical Thinking Through Classical
Statistics, in Exploring Data Tables, Trends, and Shapes 1, 8-9 (David C. Hoaglin et al. eds., 1985); Frank T.
Denton, Data Mining As an Industry, 67 Rev. Econ. & Stat. 124 (1985); David A. Freedman, A Note on
Screening Regression Equations, 37 Am. Statistician 152 (1983). Intuition may suggest that the more variables
included in the model, the better. However, this idea often seems to be wrong. Complex models may reflect
only accidental features of the data. Standard statistical tests offer little protection against this possibility when
the analyst has tried a variety of models before settling on the final specification.

162. See supra §1V.B.1.

163. An interval estimate may be composed of a point estimate —like the sample mean used to estimate the
population mean—together with its standard error, or the two can be combined into a confidence interval.
The first alternative may be more informative.

164. Accordingly, it has been argued that courts should demand confidence intervals (whenever they can
be computed) to the exclusion of explicit significance tests and p-values. Kaye, supra note 128, at 1349 n.78; ¢.
Bailar & Mosteller, supra note 147, at 317.
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that the population difference could be substantial. Lack of significance does not
exclude this possibility. 165

e.  What are the other explanations for the findings?

The p-value of a statistical test is computed on the basis of a model for the
data—the null hypothesis. Usually, the test is made in order to argue for the al-
ternative hypothesis —another model. However, on closer examination, both
models may prove to be unreasonable.%¢ A small p-value indicates the occur-
rence of something besides random error; the alternative hypothesis should be
viewed as one possible explanation out of many for the data. 67

In Mapes Casino, Inc. v. Maryland Casualty Co.,1%8 for example, the court
recognized the importance of explanations that the proponent of the statistical
evidence had failed to consider. In this action to collect on an insurance policy,
Mapes Casino sought to quantify the amount of its loss due to employee defalca-
tion. The casino argued that certain employees were using an intermediary to
cash in chips at other casinos. It established that over an eighteen-month period
the win percentage at its craps tables was 6%, compared with an expected value
of 20%. The court recognized that the statistics were probative of the fact that
something was wrong at the craps tables—the discrepancy was too large to ex-
plain as the mere product of random chance. However, the court was not con-
vinced by the plaintiff's alternative hypothesis. The court pointed to other possi-
ble explanations (such Runyonesque activities as skimming, scamming, and
crossroading) that might have accounted for the discrepancy without implicating
the suspect employees. 16 In short, rejection of the null hypothesis does not leave
the proffered alternative hypothesis as the only viable explanation for the data.?

165. We have used two-sided intervals corresponding to two-tailed tests. One-sided intervals corresponding
to one-tailed tests also are available.

166. Often, the null and alternative hypotheses are statements about possible ranges of values for parame-
ters in a common statistical model. Computations of standard errors, p-values, and power all take place within
the confines of this basic model. The statistical analysis looks at the relative plausibility for competing values of
the parameters but makes no global assessment of the reasonableness of the basic model. Inquiry by the court
may be advisable.

167. See, e.g ., Paul Meier & Sandy Zabell, Benjamin Peirce and the Howland Will, 75 J. Am. Stat. Ass'’n
497 (1980) (competing explanations in a forgery case). Outside the legal realm there are many intriguing ex-
amples of the tendency to think that a small p-value is definitive proof of an alternative hypothesis, even
though there are other plausible explanations for the data. See, e.g., Freedman et al., supra note 12, at 503-04;
C.E.M. Hansel, ESP: A Scientific Evaluation (1966).

168. 290 F. Supp. 186 (D. Nev. 1968).

169. Id. at 193. Skimming consists of taking off the top before counting the drop; scamming is cheating by
collusion between dealer and player; and crossroading involves professional cheaters among the players. Id. In
plainer language, the court seems to have ruled that the casino itself might be cheating, or there could have
been cheaters other than the particular employees identified in the case. At the least, plaintiff's statistical evi-
dence did not rule such possibilities out of bounds.

170. Compare EEOC v. Sears, Roebuck & Co., 839 F.2d 302, 312 & n.9, 313 (7th Cir. 1988) (EEOC's
regression studies showing significant differences did not establish liability because surveys and testimony sup-
ported the rival hypothesis that women generally had less interest in commission sales positions) with EEOC v.
General Tel. Co. of N.W., Inc., 885 F.2d 575 (9th Cir. 1989) (unsubstantiated rival hypothesis of lack of inter-
est in nontraditional jobs insufficient to rebut prima facie case of gender discrimination), cert. denied , 498 U.S.
950 (1990); cf. supra § I1.C (problem of confounding).

Statistics 385



C. Posterior Probabilities

Standard errors, p-values, and significance tests are often used to assess random
error. These assessments rely on the sample data and are justified in terms of the
operating characteristics of the statistical procedures. However, this frequen tist
approach does not permit the statistician to compute the probability that a
particular hypothesis is correct, given the data.72

In the Bayesian approach, probabilities represent subjective degrees of belief
rather than objective facts. This approach allows the calculation of posterior
probabilities for various hypotheses given the data.1® However, such probabil-
ities must be “personal,” for they reflect not just the data, but also the statisti-
cian’s, or perhaps the fact finder’s,1” subjective prior probabilities —that is, de-
gree of belief about the hypotheses, prior to obtaining the data.17

171. Operating characteristics are the expected value and standard error of estimators, probabilities of er ror
for statistical tests, and so forth.

172. See supra 8§ 1V.B.1. Consequently, quantities such as p-values or confidence levels cannot be com-
pared directly with numbers like .95 or .50 that might be thought to quantify the burden of persuasion in civil
or criminal cases. See David H. Kaye, Hypothesis Testing in the Courtroom , in Contributions to the Theory and
Application of Statistics 331 (Alan E. Gelfand ed., 1987); David H. Kaye, Apples and Oranges : Confidence
Coefficients and the Burden of Persuasion , 73 Cornell L. Rev. 54 (1987).

173. See, e.g., Joseph B. Kadane, A Statistical Analysis of Adverse Impact of Employer Decisions, 85 J. Am.
Stat. Ass’n 925 (1990) (analysis of data in an age discrimination case); David H. Kaye, Statistical Evidence of
Discrimination, 77 J. Am. Stat. Ass’n 773, 780 (1982) (Bayesian analysis of the data in Swain v. Alabama, 380
U.S. 202 (1965)); Kaye, supra note 156, at 848-52 (analysis of data from Hazelwood Sch. Dist. v. United
States, 433 U.S. 299 (1977)).

174. E.g., Michael O. Finkelstein & William B. Fairley, A Bayesian Approach to Identification Evidence,
83 Harv. L. Rev. 489 (1970); Kadane, supra note 173. But see Laurence H. Tribe, Trial by Mathematics:
Precision and Ritual in the Legal Process , 84 Harv. L. Rev. 1329 (1971) (arguing that efforts to describe the im-
pact of evidence on a juror’s subjective probabilities would unduly impress jurors and undermine the presump-
tion of innocence and other legal values).

175. See generally David H. Kaye, Introduction: What is Bayesianism?, in Probability and Inference in the
Law of Evidence: The Uses and Limits of Bayesianism 1 (Peter Tillers & Eric D. Green eds., 1988); Brian
Skyrms, Choice and Chance: An Introduction to Inductive Logic (3d ed. 1986).
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To date, such analyses rarely have been used in court, ¢ and the question of
their forensic value has been aired primarily in academic literature.’” Some
statisticians favor Bayesian methods,'® and some legal commentators have
proposed their use in certain kinds of cases.1®

176. See The Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 193. The
one area where Bayesian techniques are often used is parentage testing in civil cases. Compare State v. Spann,
617 A.2d 247, 257 (N.J. 1993) with Plemel v. Walter, 735 P.2d 1209, 1215 (Or. 1987).

177. See, e.g., Probability and Inference in the Law of Evidence: The Uses and Limits of Bayesianism,
supra note 175; Symposium, Decision and Inference in Litigation , 13 Cardozo L. Rev. 253 (1991).

178. Donald A. Berry, Inferences Using DNA Profiling in Forensic Identification and Paternity Cases, 6 Stat.
Sci. 175, 180 (1991); Stephen E. Fienberg & Joseph B. Kadane, The Presentation of Bayesian Statistical
Analyses in Legal Proceedings, 32 Statistician 88 (1983); Stephen E. Fienberg & Mark J. Schervish, The
Relevance of Bayesian Inference for the Presentation of Statistical Evidence and for Legal Decisionmaking , 66
B.U. L. Rev. 771 (1986); Kadane, supra note 173; Kathryn Roeder, DNA Fingerprinting: A Review of the
Controversy, 9 Stat. Sci. 222 (1994); cf. I. W. Evett et al., An lllustration of the Advantages of Efficient
Statistical Methods for RFLP Analysis in Forensic Science , 52 Am. J. Hum. Genet. 498, 499 (1993) (favoring
presentation of the likelihood ratio for expressing the weight of DNA evidence). Nevertheless, many statisti-
cians question the general applicability of Bayesian techniques: The results of the analysis may be substantially
influenced by the prior probabilities, which in turn may be quite arbitrary.

179. E.g., Ira Mark Ellman & David Kaye, Probabilities and Proof: Can HLA and Blood Group Testing
Prove Paternity?, 54 N.Y.U. L. Rev. 1131 (1979); David H. Kaye, DNA Evidence: Probability, Population
Genetics, and the Courts , 7 Harv. J.L. & Tech. 101 (1993); Joseph C. Bright et al., Statistical Sampling in Tax
Audits, 13 Law & Soc. Inquiry 305 (1988); authorities cited supra note 174.

Bayesian procedures are sometimes defended on the ground that the beliefs of any rational observer must
conform to the Bayesian rules. However, the definition of “rational” is purely formal. See Peter C. Fishburn,
The Axioms of Subjective Probability , 1 Stat. Sci. 335 (1986); David Kaye, The Laws of Probability and the Law
of the Land, 47 U. Chi. L. Rev. 34 (1979).
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Appendix: Technical Details on the Standard Error, the
Normal Curve, and the P-Value

This appendix describes several calculations for our pass rate example. The pop-
ulation consisted of all 5,000 men and 5,000 women in the applicant pool. By
way of illustration, suppose that the pass rates for these men and women were
60% and 35%, respectively; so the population difference is 60 — 35 = 25 per-
centage points. We chose 50 men and 50 women at random from the popula-
tion. In our sample, the pass rate for the men was 58%, and the pass rate for the
women was 38%; thus, the sample difference was 58 — 38 = 20 percentage
points. Another sample might have pass rates of 62% and 36%, for a sample dif-
ference of 62 — 36 = 26 percentage points. And so forth.

In principle, we can consider the set of all possible samples from the popula-
tion and make a list of the corresponding differences. This is a long list. Indeed,
the number of distinct samples of 50 men and 50 women that can be formed is
immense—nearly 5 x 102, or 5 followed by 240 zeros. Our sample difference
was chosen at random from this list. Statistical theory enables us to make some
precise statements about the list and hence about the chances in the sampling
procedure.

« The average of the list—that is, the average of the differences over the
5 x 10%° possible samples—equals the difference between the pass
rates of all 5,000 men and 5,000 women. In more technical language,
the expected value of the sample difference equals the population dif-
ference. Even more tersely, the sample difference is an unbiased estima-
tor of the population difference.

« The standard deviation (SD) of the list—that is, the standard deviation
of the differences over the 5 x 10%*° possible samples—is equal to: 18

180. See, e.g., Freedman et al., supra note 12, at 337; Moore & McCabe, supra note 57, at 590-91. The
standard error for the sample difference equals the standard deviation of the list of all possible sample
differences, making the connection between standard error and standard deviation. If we drew two samples at
random, the difference between them would be on the order of /2 =14 times this standard deviation. The
standard error can therefore be used to measure reproducibility of sample data. See supra notes 125-26. On the
standard deviation, see supra 8 I11.E; see also Freedman et al., supra note 12, at 67.
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In equation (1), P, stands for the proportion of the 5,000 male applicants
who would pass the exam, and P, stands for the corresponding proportion of
women. When P, = 60% and P ,,omen = 35%, the standard deviation of the sam-

ple differences would be 9.6 percentage points:

5,000 ~50 _ \/.60(1—.60) . 3s(1-35) -
\ 5,000 - 1 50 50 o @

Figure 12
The distribution of the sample difference in pass rates when P, = 60% and

Pwomen = 35%'

insert figure 12 here

Figure 12 shows the histogram for the sample differences. 81 The graph is
drawn so the area between two values gives the relative frequency of sample dif-

181. The probability histogram in Figure 12 shows the distribution of the sample differences, indicating the
relative likelihood of the various ranges of possible values; likelihood is represented by area. The lower hor-
izontal scale shows standard units, that is, deviations from the expected value relative to the standard error. In
our example, the expected value is 25 percentage points and the standard error is 9.6 percentage points. Thus,
35 percentage points would be expressed as (35 — 25)/9.6 = 1.04 standard units. The vertical scale shows prob-
ability per standard unit. Se Freedman et al., supra note 12, at 75, 289.
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ferences falling in that range, among all 5 x 10%° possible samples. For in-
stance, take the range from 20 to 30 percentage points. About half the area un-
der the histogram falls into this range. Therefore, given our assumptions, there is
about a 50% chance that a sample chosen at random will have a male-female
pass rate difference between 20 and 30 percentage points. The “central limit
theorem” establishes that the histogram for the sample differences follows the
normal curve, at least to a good approximation. Figure 12 shows this curve for
comparison. The main point is that chances for the sample difference can be
approximated by areas under the normal curve.

Generally, we do not know the pass rates P, and P ... in the population.
We chose 60% and 35% just by way of illustration. Statisticians would use the
pass rates in the sample—58% and 38%—to estimate the pass rates in the popu-
lation. Substituting the sample pass rates in equation (1) yields:

5000 —s0 581 -58) 38(1-38) -
{5000 -1 |7 50 50 )

That is about 10 percentage points—the standard error reported in section
IV.A2.18

To sum up, the histogram for the sample differences follows the normal
curve, centered at the population difference. The spread is given by the standard
error. That is why confidence levels can be based on the standard error, with
confidence levels read off the normal curve: 68% of the area under the curve is
between -1 and 1, 95% is between -2 and 2, and 99.7% is between -3 and 3, ap-
proximately.

We turn to p-values.t8 Consider the null hypothesis that the men and women
in the population have the same overall pass rates. In that case, the sample
differences are centered at 0, because P, — P,omen = 0. Since the overall pass
rate in the sample is 48%, we use this value to estimate both P, and P
equation (1):

\/m ) \/.48(1—.48) , 8(1-48)
5,000 - 1 50 50 @

Again, the standard error (SE) is about 10 percentage points. The observed dif-
ference of 20 percentage points is 20/10 = 2.0 SEs. As shown in Figure 13, dif-
ferences of that magnitude or larger have about a 5% chance of occurring:

women In

182. There is little difference between equations (2) and (3)—the standard error does not depend strongly
on the pass rates.
183. See supra §1V.B.1.
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About 5% of the area under the normal curve lies beyond 2. (In Figure 13, this
tail area is shaded.) The p-value is about 5%. 184

Figure 13

P-value for observed difference of 20 percentage points, computed using the null
hypothesis. The chance of getting a sample difference of 20 points in magnitude
(or more) is about equal to the area under the normal curve beyond +2. That
shaded area is about 5%.

insert figure 13 here

Finally, we calculate power.1® We are making a two-tailed test at the .05
level. Instead of the null hypothesis, we assume an alternative: In the applicant
pool, 55% of the men would pass, and 45% of the women. So there is a differ-
ence of 10 percentage points between the pass rates. The distribution of sample
differences would now be centered at 10 percentage points (see Figure 14).
Again, the sample differences follow the normal curve. The true SE is about 10
percentage points by equation (1), and the SE estimated from the sample will be
about the same. On that basis, only sample differences larger than 20 percentage

184. Technically, the p-value is the chance of getting data as extreme as, or more extreme than, the data at
hand. See supra § IV.B.1. That is the chance of getting a difference of 20 percentage points or more on the
right, together with the chance of getting -20 or less on the left. This chance equals the area under the his-
togram to the right of 19, together with the area to the left of -19. (The rectangle whose area represents the
chance of getting a difference of 20 is included, and likewise for the rectangle above -20.) The area under the
histogram in turn may be approximated by the area under the normal curve beyond £1.9, which is 5.7%. See,
eg., Freedman et al., supra note 12, at 291. Keeping track of the edges of the rectangles is called the
“continuity correction.” As a technical matter, the histogram is computed assuming pass rates of 48% for the
men and the women. Other values could be dealt with in a similar way. See infra note 187.

185. See supra note 152.
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points or smaller than —20 points will be declared significant. 18 About 1/6 of the
area under the normal curve in Figure 14 lies in this region.18” Therefore, the
power of the test against the specified alternative is only about 1/6. In the figure,
it is the shaded area that corresponds to power.

Figures 12, 13, and 14 have the same shape: The central limit theorem is at
work. However, the histograms are centered differently, because the values of
Pmen and Pyomen are different in all three figures. Figure 12 is centered at 25
percentage points, reflecting our illustrative values of 60% and 35% for the pass
rates. Figure 13 is centered at 0, because it is drawn according to the require-
ments of the null hypothesis. Figure 14 is centered at 10 percentage points, be-
cause the alternative hypothesis is used to determine the center, rather than the
null hypothesis.

Figure 14

Power when P, = 55% and P,,... = 45%. The chance of getting a significant
difference (at the 5% level, two-tailed) is about equal to the area under the nor-
mal curve, to the right of +1 or to the left of —2. That shaded area is about 1/6.
Power is about 1/6, or 17%.

186. The null hypothesis asserts a difference of 0: In Figure 13, 20 percentage points is 2 SEs to the right of
the value expected under the null hypothesis; likewise, -20 is 2 SEs to the left. However, Figure 14 takes the
alternative hypothesis to be true; on that basis, the expected value is 10 instead of 0, so 20 is 1 SE to the right of
the expected value, while -20 is 3 SEs to the left.

187. Let t = sample difference/SE, where the SE is estimated from the data, as in equation (4). One formal
version of our test rejects the null hypothesis if [t| = 2. To find the power, we replace the estimated SE by the
true SE, computed as in equation (1), and we replace the probability histogram by the normal curve. These
approximations are quite good. The size can be approximated in a similar way, given a common value for the
two population pass rates. Of course, more exact calculations are possible. See supra note 184.
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Glossary of Terms

The following terms and definitions are adapted from a variety of sources, in-
cluding: Michael O. Finkelstein & Bruce Levin, Statistics for Lawyers (1990),
and David Freedman et al., Statistics (2d ed. 1991).

Alpha (a). Also, size. A symbol often used to denote the probability of a Type |
error. See Type | Error.

Alternative Hypothesis. A statistical hypothesis that is contrasted with the null
hypothesis in a significance test. See Statistical Hypothesis; Significance
Test.

Area Sample. An area sample is a probability sample in which the sampling
frame is a list of geographical areas (i.e., one makes a list of areas, chooses
some at random, and interviews people in the selected areas). This is a cost -
effective way to draw a sample of people. See Probability Sample; Sampling
Frame.

Bayes’ Rule. An investigator may start with a subjective probability (the “prior”)
that expresses degrees of belief about a parameter or a hypothesis. Then data
are collected according to some statistical model. Bayes’ rule gives a proce-
dure for combining the prior with the data to compute the “posterior” prob-
ability, which expresses the investigator’s beliefs about the parameter or hy-
pothesis given the data.

Beta (). A symbol used sometimes to denote power and sometimes to denote
the probability of a type 11 error. See Type Il Error; Power.

Bias. A systematic tendency for an estimate to be too high or too low. An esti-
mate is unbiased if the bias is 0. See Nonsampling Error.

Bin. A class interval in a histogram. See Class Interval; Histogram.

Binary Variable. A variable that has only two possible values (e.g., the gender of
an employee).

Binomial Distribution. A distribution for the number of occurrences in repeated,
independent trials where the probabilities are fixed. For example, the num-
ber of heads out of 100 tosses of a coin follows a binomial distribution. (The
probability of heads is 1/2 on each toss.) When the probability is not too
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close to 0 or 1 and the number of trials is large, the binomial distribution has
about the same shape as the normal distribution. See Normal Distribution;
Poisson Distribution.

Bootstrapping. A procedure for estimating sampling error by generating a simu-
lated population from the sample, then repeatedly drawing samples from
this population.

Categorical Data; Categorical Variable. See Qualitative Variable.

Central Limit Theorem. Shows that under suitable conditions, the probability
histogram for a sum (or average, or rate) will follow the normal curve.

Chance Error. See Random Error; Sampling Error.

Chi-Squared (x2). A statistic that measures the distance between the data and ex-
pected values computed from a statistical model. If x2 is too large to explain
by chance, the data contradict the model. The definition of large depends
on the context. See Statistical Hypothesis; Significance Test.

Class Interval. Also, bin. The base of a rectangle in a histogram; the area of the
rectangle shows the percentage of observations in the class interval. See
Histogram.

Cluster Sample. A type of random sample. For example, a statistician might take
households at random, then interview all the people in the selected house-
holds. This is a cluster sample of people: A cluster consists of all the people
in a selected household. Generally, clustering reduces the cost of interview-
ing.

Coefficient of Determination. A statistic (more commonly known as R2) that de-
scribes how well a regression equation fits the data. See R-Squared.

Coefficient of Variation. A statistic that measures spread relative to the center of
the distribution: SD/average, or SE/expected value.

Conditional Probability. The probability that one event will occur given that an-
other has occurred.

Confidence Coefficient. See Confidence Interval.

Confidence Interval. An estimate, expressed as a range, for a quantity in a popu-
lation. If an estimate from a large sample is unbiased, a 95% confidence in-
terval is the range from two standard errors below to two standard errors
above the estimate. Intervals obtained this way cover the true value about
95% of the time, and 95% is the confidence level, or the confidence coeffi-
cient. See Unbiased Estimator; Standard Error.

Confidence Level. See Confidence Interval.
Confounding. See Confounding Variable; Observational Study.
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Confounding Variable; Confounder. A variable that is correlated with the inde-
pendent variables and the dependent variable. When confounding is sus-
pected, an association between the dependent and independent variable
may not be causal. See Controlled Experiment; Observational Study.

Consistency; Consistent. See Consistent Estimator.

Consistent Estimator. An estimator that tends to become more and more accu-
rate as the sample size grows. (Inconsistent estimators, which do not become
more accurate as the sample size grows, are generally not used by statisti-
cians.)

Content Validity. The extent to which a skills test is appropriate to its intended
purpose, as evidenced by a set of questions that adequately reflect the do-
main being tested.

Continuous Variable. A variable that has arbitrarily fine gradations, such as a
person’s height.

Control Group. See Controlled Experiment.

Control for. Statisticians “control for” the effects of confounding variables in
nonexperimental data by making comparisons for smaller and more homo-
geneous groups of subjects or by using regression models. See Regression
Model.

Controlled Experiment. An experiment where the investigators determine which
subjects are put into the treatment group and which are put into the control
group. Subjects in the treatment group are exposed by the investigators to
some influence—the treatment; those in the control group are not so
exposed. For instance, in an experiment to evaluate a new drug, subjects in
the treatment group are given the drug, while subjects in the control group
are given some other therapy. The outcomes in the two groups are
compared to see whether the new drug works. Randomization—that is,
randomly assigning subjects to each group—is usually the best way to assure
that any observed difference between the two groups comes from the
treatment rather than preexisting differences. Of course, in many situations,
a randomized controlled experiment is impractical, and investigators must
then rely on observational studies.

Convenience Sample. Also, grab sample. A nonrandom sample of units; for in -
stance, for a “mall sample,” the interviewer picks respondents from the
crowd in a shopping mall.

Correlation Coefficient. A number between -1 and 1 that indicates the extent of
the linear association between two variables. Often, the correlation coeffi-
cient is abbreviated as r .
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Covariance. A guantity that describes the statistical interrelationship of two vari-
ables.

Covariate. A variable that is related to other variables of primary interest in a
study.

Criterion. The variable against which a skills test or other selection procedure is
validated. See Predictive Validity.

Data. Observations or measurements, usually of units in a sample taken from a
larger population.

Dependent Variable. See Independent Variable; Regression Model.

Descriptive Statistic. A statistic, such as the mean or the standard deviation, used
to summarize data.

Differential Validity. Differences in the relationship between skills test scores
and outcome measures across different subgroups of test takers.

Discrete Variable. A variable that has only a finite number of possible values,
such as the number of automobiles owned by a household.

Random Disturbance Term. See Error Term.

Double -Blind Experiment . An experiment with human subjects in which neither
the diagnosticians nor the subjects know who is in the treatment group or
the control group. This is accomplished by giving a placebo treatment to
subjects in the control group.

Dummy Variable. Generally, a dummy variable takes only the values 0 or 1 and
distinguishes one group of interest from another. For example, in a regres-
sion study of salary differences between men and women in a firm, the ana-
lyst may include a dummy variable for gender and statistical controls such as
education and experience to adjust for productivity differences between men
and women. The dummy variable would be defined as 1 for the men, 0 for
the women. See Regression Model.

Econometrics. The statistical study of economic issues.
Epidemiology. Statistical study of disease or injury in human populations.

Error Term. The part of a statistical model that describes random error (i.e., the
impact of chance factors unrelated to variables in the model). In economet-
ric models, the error term is called a random disturbance term.

Estimator. A sample statistic used to estimate a population parameter. For in-
stance, the sample mean commonly is used to estimate the population
mean. The term “estimator” connotes a statistical procedure, while an
“estimate” connotes a particular numerical result.

Expected Value. See Random Variable.
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Fisher’s Exact Test. When comparing two sample proportions (e.g., the propor -
tions of whites and blacks getting a promotion), an investigator may want to
test the null hypothesis that promotion does not depend on race. Fisher’s ex-
act test is one way to arrive at a p-value. The calculation is based on the hy-
pergeometric distribution. See Hypergeometric Distribution; Statistical
Hypothesis; Significance Test; p-Value.

Fixed Significance Level. Also, alpha, size. A preset level, such as 0.05 or 0.01. If
the p-value of a test falls below this level, the result is deemed statistically
significant. See Significance Test.

Frequency Distribution. Shows how often specified values occur in a data set.
Gaussian Distribution. See Normal Distribution.

General Linear Model. Expresses the dependent variable as a linear combination
of the independent variables plus an error term whose components may be
dependent and have differing variances. See Error Term; Linear
Combination; Regression Model; Variance.

Grab Sample. See Convenience Sample.
Heteroscedastic. See Scatter Diagram.

Histogram. A plot showing how observed values fall within specified intervals,
called bins or class intervals. Generally, matters are arranged so the area un-
der the histogram, but over a class interval, gives the frequency or relative
frequency of data in that interval. In a probability histogram, the area gives
the chance of observing a value that falls in the corresponding interval.

Homoscedastic. See Scatter Diagram.

Hypergeometric Distribution. Suppose a sample is drawn at random without re-
placement from a finite population. The number of times that items of a
certain type come into the sample is given by the hypergeometric distribu-
tion.

Hypothesis Test. See Significance Test.

Independence. Events are independent when the probability of one is unaffected
by the occurrence or nonoccurrence of the other.

Independent Variable. The independent variable is used in a regression model to
predict values of the dependent variable. For instance, the unemployment
rate has been used as the independent variable in a model for predicting the
crime rate; the latter is the dependent variable in this application. See
Regression Model.

Indicator Variable. See Dummy Variable.

Interval Estimate. A confidence interval; or, a point estimate coupled with a
standard error. See Confidence Interval; Standard Error.
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Least Squares. See Least-Squares Estimator; Regression Model.

Least-Squares Estimator. An estimator that is computed by minimizing the sum
of the squared residuals. See Residual.

Linear Combination. To obtain a linear combination of two variables, the first
variable is multiplied by some constant, the second variable is multiplied by
another constant, and the two products are added (e.g., 2u + 3v is a linear
combination of u and v).

Loss Function. Statisticians may evaluate estimators according to a mathematical
formula involving the errors (i.e., differences between actual values and es-
timated values). The loss may be the total of the squared errors or the total of
the absolute errors, etc. Loss functions seldom quantify real losses but may
be useful summary statistics and may prompt the construction of useful sta-
tistical procedures.

Mean. The mean is one way to find the center of a batch of numbers: Add up
the numbers, and divide by how many there are. Weights may be employed,
too, as in weighted mean or weighted average. Also, the expected value of a
random variable; average. See Random Variable.

Median. The median is another way to find the center of a batch of numbers.
The median is the fiftieth percentile. Half the numbers are larger, and half
are smaller. (To be very precise, at least half the numbers are greater than or
equal to the median; at least half the numbers are less than or equal to the
median; for small data sets, the median may not be uniquely defined.)

Meta-Analysis. Attempts to combine information from all studies in a certain
collection.

Mode. The most commonly observed value.

Multicollinearity. Also, collinearity. The existence of correlations among the
independent variables in a regression model. See Independent Variable;
Regression Model.

Multiple Comparison. An examination of more than one test statistic relating to
the same data set. Multiple comparisons complicate the interpretation of a
p-value. For example, if twenty divisions of a company are examined for dis-
parities, and one division is found to have a disparity significant at the 0.05
level, the result is not surprising; indeed, it should be expected under the
null hypothesis.

Multiple Correlation Coefficient. A number that indicates the extent to which
one variable can be predicted as a linear combination of other variables. Its
magnitude is the square root of R2. See Linear Combination; R-Squared;
Regression Model.
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Multiple Regression. A regression equation that includes two or more indepen-
dent variables. See Regression Model.

Multistage Cluster Sample. A probability sample drawn in stages, usually after
stratification; the last stage will involve drawing a cluster. See Cluster
Sample; Probability Sample; Stratified Random Sample.

Natural Experiment. An observational study in which treatment and control
groups have been formed by some natural development; however, the as-
signment of subjects to groups is judged akin to randomization. See
Observational Study.

Nonsampling Error. A catch-all term for sources of error in a survey, other than
sampling error. Nonsampling errors cause bias. One example is selection
bias: The sample is drawn in a way that tends to exclude certain subgroups
in the population. A second example is nonresponse bias: People who do not
respond to a survey are usually different from respondents. A final example:
Response bias arises, for instance, if the interviewer uses a loaded question.

Normal Distribution. Also, Gaussian distribution. The density for this distribu-
tion is the famous bell -shaped curve. Statistical terminology notwithstand-
ing, there is nothing wrong with a distribution that differs from the normal.

Null Hypothesis. A hypothesis that there is no difference between two groups
from which samples are drawn. See Statistical Hypothesis.

Observational Study. A study in which subjects select themselves into groups;
investigators then compare the outcomes for the different groups. For exam-
ple, studies of smoking are generally observational. Subjects decide whether
or not to smoke; the investigators compare the death rate for smokers with
the death rate for nonsmokers. In an observational study, the groups may dif-
fer in important ways that the investigators do not notice; controlled experi-
ments minimize this problem. The critical distinction is that in a controlled
experiment, the investigators intervene to manipulate the circumstances of
the subjects; in an observational study, the investigators are passive observers.
(Of course, running a good observational study is hard work and may be
quite useful.)

Observed Significance Level. See p-Value.

Odds. The probability that an event will occur divided by the probability that it
will not. For example, if the chance of rain tomorrow is 2/3, then the odds
on rain are (2/3)/(1/3) = 2/1, or 2 to 1.

Odds Ratio. A measure of association, often used in epidemiology. For instance,
if 10% of all people exposed to a chemical develop a disease, compared with
5% of people who are not exposed, the odds of the disease in the exposed
group are 10/90 = 1/9, compared with 5/95 = 1/19 in the unexposed group.
The odds ratio is 19/9 = 2.1. An odds ratio of 1 indicates no association.
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One -Sided Hypothesis. Excludes the possibility that a parameter could be, for ex-
ample, less than the value asserted in the null hypothesis. A one-sided hy-
pothesis leads to a one-tailed test. See Statistical Hypothesis; Significance
Test.

One-Tailed Test. See Significance Test.

Outlier. An observation that is far removed from the bulk of the data. Outliers
may indicate a faulty measurement; they may exert undue influence on a
summary statistic, such as the mean or the correlation coefficient.

p-Value. The output of a statistical test. The probability of getting, just by
chance, a test statistic as large as or larger than the observed value. Large
p-values are consistent with the null hypothesis; small p-values undermine
this hypothesis. However, p itself does not give the probability that the null
hypothesis is true. If p is smaller than 5%, the result is said to be statistically
significant. If p is smaller than 1%, the result is highly significant. The
p-value is also called the observed significance level. See Statistical
Hypothesis; Significance Test.

Parameter. A numerical characteristic of a population or of a model. See
Probability Model.

Percentile. To get the 90th percentile, for instance, of a data set, the data are ar-
rayed from the smallest value to the largest. Then 90% of the values fall be-
low the 90th percentile, and 10% fall above. (To be very precise, at least
90% of the data are at the 90th percentile or below; at least 10% of the data
are at the 90th percentile or above.) The 50th percentile is the median.
When the LSAT first was scored on a 10-50 scale in 1982, a score of 32
placed a test taker at the 50th percentile; a score of 40 was at the 90th per-
centile (approximately).

Point Estimate. An estimate of the value of a quantity expressed as a single num-
ber.

Poisson Distribution. The Poisson distribution is a limiting case of the binomial
distribution, when the number of trials is large and the common probability
is small. The parameter of the approximating Poisson distribution is the
number of trials times the common probability, which gives the “expected”
number of events. When this number is large, the Poisson distribution may
be approximated by a normal distribution.

Population. Also, universe. All the units of interest to the researcher.
Posterior Probability. See Bayes’ Rule.

Power. The probability that a statistical test will reject the null hypothesis. To
compute power, the analyst has to fix the size of the test and specify parame-
ter values outside the range given in the null hypothesis. A powerful test has
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a good chance of detecting an effect, when there is an effect to be detected.
See Significance Test; Beta.

Practical Significance. Substantive importance. Statistical significance does not
necessarily establish practical significance. Small differences can be statisti-
cally significant in large samples.

Predictive Validity. A psychological or skills test has predictive validity to the ex-
tent that test scores are well correlated with later performance or, more gen-
erally, with outcomes that the test is intended to predict.

Prior Probability. See Bayes’ Rule.

Probability. Chance, on a scale from 0 to 1. Impossibility is represented by 0,
certainty by 1. Equivalently, chances may be quoted in percentages; 100%
corresponds to 1; 5% to .05; and so forth.

Probability Density. Describes the probability distribution for a random variable.
The chance that the random variable falls in an interval equals the area be-
low the density and above the interval. See Probability Distribution;
Variable.

Probability Distribution. Gives probabilities for possible values of a random vari -
able. Often, the distribution is described in terms of the density. See
Probability Density.

Probability Histogram. See Histogram.

Probability Model. Relates probabilities of outcomes to parameters; also,
Statistical Model. The latter connotes unknown parameters.

Probability Sample. A sample drawn from a sampling frame by some objective
chance mechanism; each unit has a known probability of being sampled.
Such samples are expensive to draw but minimize selection bias.

Psychometrics. The study of psychological measurement and testing.

Qualitative Variable; Quantitative Variable. A qualitative or categorical variable
describes qualitative features of subjects in a study (e.g., marital status—
never married, married, widowed, divorced, separated). A quantitative vari-
able describes numerical features of the subjects (e.g., height, weight, in-
come). This is not a hard-and-fast distinction, because qualitative features
may be given numerical codes, as in a dummy variable. Quantitative vari-
ables may be classified as discrete or continuous. Concepts like the mean
and the standard deviation apply only to quantitative variables. See Discrete
Variable; Continuous Variable.

Quartile. The 25th or 75th percentile. See Percentile.
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R-Squared (R ). Measures how well a regression equation fits the data. R? varies
between 0 (no association) and 1 (perfect fit). Generally, R? does not mea-
sure the validity of underlying assumptions. See Regression Model.

Random Error. Sources of error that are haphazard in their effect. These are re -
flected in the error term of a statistical model. Some authors refer to random
error as chance error or sampling error. See Regression Model.

Random Variable. A variable whose possible values occur according to some
probability mechanism. For example, if you throw a pair of dice, the total
number of spots is a random variable. The chance of two spots is 1/36, the
chance of three spots is 2/36, and so forth; the most likely number is seven,
with a chance of 6/36. The expected value of a random variable is the
weighted average of the possible values; the weights are the probabilities. In
our example, the expected value is

ix2+£x3+ix4+ix5+i><6+ix7

36 36 36 36 36
+ix8+ix9+ix10+£x11+ix12:7
36 36 36

In many problems, the weighted average is computed with respect to the
density; then sums must be replaced by integrals. The expected value need
not be a possible value for the random variable. Generally, a random vari-
able will be somewhere around its expected value, but it will be off (in either
direction) by something like 1 standard error or so. See Standard Error.

Randomization. See Controlled Experiment.

Randomized Controlled Experiment. A controlled experiment in which subjects
are placed into the treatment and control groups at random—as if by lot.
See Controlled Experiment.

Range. The difference between the biggest and smallest values in a batch of
numbers.

Regression Coefficient. A constant in a regression equation. See Regression
Model.

Regression Diagnostics. Procedures intended to check whether the assumptions
of a regression model are appropriate.

Regression Equation. See Regression Model.

Regression Line. The graph of a regression equation with only one dependent
variable and one independent variable.

Regression Model. A regression model attempts to combine the values of certain
variables (the independent variables) to obtain expected values for another

404 Reference Manual on Scientific Evidence



variable (the dependent variable). A hypothetical example illustrates the
idea. An analyst might try to predict salaries of employees in a firm using
education, experience—and a dummy variable for gender, taking the value
1 for men and 0 for women. Here, salary is the dependent variable (the vari-
able being predicted), while education, experience, and the dummy are the
independent variables (the variables entered into the equation to make the
predictions).

Sometimes, “regression model” refers to a statistical model for the data; if
no qualifications are made, the model will generally be linear, and errors
will be assumed independent, with common variance. At other times,
“regression model” refers to an equation estimated from data.

In our example, salary (dollars per year) is predicted from education (years
of schooling completed) and experience (years with the company)—along
with the dummy variable man, taking the value 1 for male employees and 0
for female employees. The model is

salary = a + b x education + ¢ x experience +d x man + u @

Equation (1) is a statistical model for the data, with unknown parameters a,
b, ¢, d; these parameters are regression coefficients; a often is called the in-
tercept, and u is an error term, with a component for each employee.

The parameters in equation (1) are estimated from the data using least
squares. If the estimated coefficient d for the dummy variable turns out to be
positive and statistically significant (by a t-test), that would be taken as evi-
dence of disparate impact: Men earn more than women, even after adjusting
for differences in background factors that might affect productivity.
Education and experience would be entered into equation (1) as statistical
controls, precisely in order to claim that adjustment had been made for dif-
ferences in background.

Suppose the estimated equation turns out as follows:

predicted salary = $7,100 + $1,300 x education + )
$2,200 x experience + $700 x man

According to equation (2), every extra year of education is worth on average
$1,300; similarly, every extra year of experience is worth on average $2,200;
and most important, men receive a premium of $700 over women with the
same education and experience, on average.

Some numerical examples will illustrate equation (2). A male employee
with 12 years of education (high school) and 10 years of experience would
have a predicted salary of
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$7,100 + $1,300 x 12 + $2,200 x 10 + $700 x 1 =

3
$7,100 + $15,600 + $22,000 + $700 = $45,400 d

A similarly situated female employee has a predicted salary of only
$7,100 + $1,300 x 12 + $2,200 x 10 + $700 x 0 = @

$7,100 + $15,600 + $22,000 + $0 = $44,700

Notice the impact of the dummy variable: $700 is added to equation (3) but
not to equation (4).

A male employee with 16 years of education (college) and 6 years of expe-
rience would have a predicted salary of

$7,100 + $1,300 x 16 + $2,200 x 6 + $700 x 1 =

$7,100 + $20,800 + $13,200 + $700 = $41,800 ©
A similarly situated female employee has a predicted salary of only
$7,100 + $1,300 x 16 + $2,200 x 6 + $700 x 0 = ©)

$7,100 + $20,800 + $13,200 + $0 = $41,100

In equation (1), u is an error term, with one component for each em-
ployee; these components are random errors. Equation (2) has correspond-
ing residuals. For each employee, there is a difference (or residual) between
the salary predicted from the equation and the actual salary:

actual = predicted + residual @

The residuals are approximations to the random errors in equation (1).

A critical step in the argument is stablishing that the coefficient d of the
dummy variable in equation (1) is “statistically significant.” This step de-
pends on the statistical assumptions built into the model. For instance, each
extra year of education is assumed to be worth the same (on average) across
all levels of experience, for both men and women; similarly, each extra year
of experience is worth the same across all levels of education, for both men
and women,; furthermore, the premium paid to men does not depend sys-
tematically on education or experience. Ability, quality of education, and
quality of experience are assumed not to make any systematic difference to
the predictions of the model.

Moreover, there are technical assumptions that must be made about the er-
ror term u: for instance, that its components—the random errors—are inde-
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pendent from person to person in the data set but have the same variance.
Some assumptions of this general nature will be found to underlie typical
applications of regression techniques; such assumptions should be identified
and their reasonableness assessed.

The term “predicted” in equation (2) has a specialized meaning, since the
analyst has available the data being predicted. For that reason, statisticians
often refer to “fitted values” rather than to “predicted values.” See Random
Error; Independence; Least Squares; Regression Model; Multiple
Regression; t-Test; Dummy Variable; Random Variable; Variance.

Relative Risk. A measure of association used in epidemiology. For instance, if
10% of all people exposed to a chemical develop a disease, compared with
5% of people who are not exposed, the disease occurs twice as frequently
among the exposed people: The relative risk is 10%/5% = 2. A relative risk of
1 indicates no association.

Reliability. The extent to which a measuring instrument gives the same results
on repeated measurement of the same thing.

Residual. The difference between an actual and a predicted value. The pre-
dicted value comes typically from a regression equation and also is called
the “fitted value.” See Regression Model; Independent Variable.

Risk. Expected loss. “Expected” means on average, over the various data sets that
could be generated by the statistical model under examination. Usually, risk
cannot be computed exactly but has to be estimated, because the parameters
in the statistical model are unknown and must be estimated. See Loss
Function; Random Variable.

Robust. A statistic or procedure that does not change much when data or as-
sumptions are slightly modified.

Sample. A set of units collected for study.
Sample Size. The number of units in a sample.

Sampling Distribution. The distribution of the values of a statistic, over all possi-
ble samples from a population. For example, suppose a random sample is
drawn. Some values of the sample mean are more likely, others are less
likely. The sampling distribution specifies the chance that the sample mean
will fall in one interval rather than another.

Sampling Error. A sample is part of a population. When a sample is used to es -
timate a numerical characteristic of the population, the estimate is likely to
differ from the population value, because the sample is not a perfect micro-
cosm of the whole. If the estimate is unbiased, the difference between the
estimate and the exact value is sampling error. More generally,
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estimate = truevalue + bias + sampling error

Sampling error is also called chance error or random error. See Standard
Error.

Sampling Frame. A list of units designed to represent the entire population as

completely as possible. The sample is drawn from the frame.

Scatter Diagram. Also, scatterplot, scattergram. A graph showing the relationship

between two variables in a study; each dot represents one subject. One vari-
able is plotted along the horizontal axis, the other variable is plotted along
the vertical axis. A scatter diagram is homoscedastic when the spread is more
or less the same inside any vertical strip. If the spread changes from one strip
to another, the diagram is heteroscedastic.

Sensitivity. In clinical medicine, the probability that a test for a disease will give

a positive result given that the patient has the disease. Sensitivity is analo-
gous to the power of a statistical test.

Sensitivity Analysis. Analyzing data in different ways to see how results depend

on methods or assumptions.

Significance Level. See Fixed Significance Level; p-Value.
Significance Test. Also, statistical test, hypothesis test, test of significance; statis-
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tical hypothesis; p-value; t-test. A significance test involves formulating a sta-
tistical hypothesis and a test statistic, computing a p-value, and comparing p
with some preestablished value to decide if the test statistic is significant.
The idea is to see whether the data conform to the predictions of the null
hypothesis. Generally, a large test statistic goes with a small p-value, and
small p-values would undermine the null hypothesis.

For instance, suppose that a random sample of male and female employees
was given a skills test, and the mean scores of the men and women were dif-
ferent in the sample. To judge whether the difference is due to sampling er-
ror, a statistician might consider the implications of competing hypotheses
about the difference in the population. The null hypothesis would say that
on average, in the population, men and women have the same scores: The
difference observed in the data is then just due to sampling error. A
one-sided alternative hypothesis would be that on average, in the population,
men score higher than women. A one-tailed test would reject the null hy-
pothesis if the sample of men score substantially higher than the women—so
much so that the difference is hard to explain on the basis of sampling error.

In contrast, the null could be tested against the two-sided alternative hy-
pothesis that on average, in the population, men score differently than
women—nhigher or lower. The corresponding two-tailed test would reject
the null hypothesis if the sample of men score substantially higher—or sub-
stantially lower—than the women.
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The one-tailed and two-tailed tests would both be based on the same data
and use the same t-statistic. However, if the men in the sample score higher
than the women, the one-tailed test would give a p-value only half as large as
the two-tailed test (i.e., the one-tailed test would appear to give stronger evi-
dence against the null hypothesis).

Significant. See p-Value; Practical Significance; Significance Test.

Simple Random Sample. A random sample in which each unit in the sampling
frame has the same chance of being sampled. For example, the statistician
takes a unit at random (as if by lottery), sets it aside, takes another at random
from what is left, and so forth.

Size . The size of a statistical test is a synonym for alpha ( o). See Alpha.

Specificity. In clinical medicine, the probability that a test for a disease will give
a negative result given that the patient does not have the disease. Specificity
is analogous to 1 — a, where a is the significance level of a statistical test.

Spurious Correlation. When two variables are correlated, one is not necessarily
the cause of the other. The vocabulary and shoe size of children in elemen-
tary school, for instance, are correlated—but learning more words does not
make their feet grow. Such noncausal correlations are said to be spurious.
(Originally, the term seems to have been applied to the correlation between
two rates with the same denominator: Even if the numerators are unrelated,
the common denominator will create some association.)

Standard Deviation (SD). Indicates how far a typical element deviates from the
average. For instance, in round numbers, the average height of women aged
eighteen and over in the United States is 5 feet 4 inches, and the SD is 3
inches. Typical woman are about 5 feet 4 inches in height; they are off this
something like 3 inches.

For distributions that follow the normal curve, about 95% of the elements
are in the range “mean -2 SD” to “mean +2 SD”. Deviations from the aver-
age that exceed 3 or 4 SDs are extremely unusual. Many authors use stan-
dard deviation also to mean standard error.

Standard Error (SE). Indicates the likely size of the sampling error in an esti-
mate. Many authors use the term “standard deviation” instead of standard
error.

Standard Error of Regression. Indicates how actual values differ (in some average
sense) from the fitted values in a regression model. See Regression Model.

Standardization. See Standardized Variable.

Standardized Variable. Transformed to have a mean of 0 and a variance of 1.
This involves two steps: (1) subtract the mean, and (2) divide by the standard
deviation.
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Statistic. A number that characterizes or summarizes data. A statistic refers to a

sample; a parameter or a true value refers to a population or a probability
model.

Statistical Control. See Control for.

Statistical Hypothesis. Data may be governed by a probability model; parameters

are numerical characteristics describing features of the model. Generally, a
statistical hypothesis is a statement about the parameters in a probability
model. The null hypothesis may assert that certain parameters have speci-
fied values or fall in specified ranges; the alternative hypothesis would spec-
ify other values or ranges. The null hypothesis is compared with the data
using a test statistic; the null hypothesis may be rejected if there is a statisti-
cally significant difference between the data and the predictions of the null
hypothesis.

Typically, the investigator seeks to demonstrate the alternative hypothesis;
the null hypothesis would explain the findings as a result of mere chance,
and the investigator uses a significance test to rule out this explanation. See
Significance Test.

Statistical Model. See Probability Model.

Statistical Significance. See p-Value; Significance Test.

Statistically Significant. See p-Value.

Stratified Random Sample. A type of probability sample. The analyst divides the

population up into relatively homogeneous groups called strata and draws a
random sample separately from each stratum.

Stratum; Strata. See Stratified Random Sample.
t-Statistic. A test statistic used to make the t-test. The t-statistic tells you how far

away an estimate is from its expected value, relative to the standard error.
The expected value is computed using the null hypothesis. Some authors re-
fer to the t-statistic, others to the z-statistic, especially when the sample is
large. A t-statistic larger than 2 or 3 in absolute value makes the null hypoth-
esis rather unlikely—the estimate is too many standard errors away from its
expected value. See Statistical Hypothesis; Significance Test; t-Test.

t-Test. A statistical test based on the t-statistic. Large t-statistics are beyond the
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usual range of sampling error. For example, if t is larger than 2 or smaller
than -2, the estimate is statistically significant at the 5% level: Such values of
t are hard to explain on the basis of sampling error. The scale for t-statistics
is tied to areas under the normal curve. For instance, a t-statistic of 1.5 is not
very striking, because 13%, or 13/100, of the area under the normal curve is
outside the range from -1.5 to 1.5. Conversely, t = 3 is remarkable: Only
3/1,000 of the area lies outside the range from -3 to 3. This discussion is
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based on having a reasonably large sample; in that context, many authors re-
fer to the z-test rather than the t-test.

For small samples drawn at random from a population known to be nor-
mal, the t-statistic follows “Student’s t -distribution” (when the null hypothe-
sis holds) rather than the normal curve; larger values of t are required to
achieve significance. See Statistical Hypothesis; Significance Test; p-Value.

Test Statistic. A statistic used to judge whether data conform to the null hypothe-
sis. The parameters of a probability model determine expected values for the
data; differences between expected values and observed values are measured
by a test statistic. Test statistics include the chi-squared statistic (x2) and the
t-statistic. Generally, small values of the test statistic are consistent with the
null hypothesis; large values lead to rejection. See Statistical Hypothesis;
p-Value; t-Statistic; Chi-Squared.

Time Series. A series of data collected over time—for instance, the Gross
National Product of the United States from 1940 to 1990.

Two -Sided Hypothesis. An alternative hypothesis asserting that the values of a pa -
rameter are different from—either greater than or less than—the value as-
serted in the null hypothesis. See Statistical Hypothesis; Significance Test.

Two-Tailed Test.  See Significance Test.

Type | Error. A statistical test makes a type | error when (a) the null hypothesis is
in fact true, and (b) the test rejects the null hypothesis (i.e., there is a false
alarm). For instance, a study of two groups may show some difference be-
tween samples from each group, even when there is no difference in the
population. When a statistical test deems the difference to be significant in
this situation, it makes a type | error. See Statistical Hypothesis; Significance
Test.

Type Il Error. A statistical test makes a type Il error when (a) the null hypothesis
is in fact not true, and (b) the test fails to reject the null hypothesis (i.e.,
there is a false negative). For instance, there may not be a significant differ-
ence between samples from two groups when, in fact, the groups are differ-
ent. See Statistical Hypothesis; Significance Test.

Unbiased Estimator. An estimator that is correct on average, over the possible
data sets. The estimates have no systematic tendency to fall high or low.

Uniform Distribution. For example, if an investigator picks a whole number at
random from 1 to 100, it has the uniform distribution: All values are equally
likely. Similarly, one gets a uniform distribution by picking a real number at
random between 0.75 and 3.25: The chance of landing in an interval is pro-
portional to the length of the interval. The uniform distribution, without
further qualification, is presumably on the unit interval (which goes from 0
to 1).
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Validity. The extent to which a test instrument measures what it is supposed to,
rather than something else. The validity of a standardized test often is indi-
cated, in part, by the correlation coefficient between the test scores and
some outcome measure.

Variable. A property of units in a study, which varies from one unit to another
(e.g., incomes of households) in a study of households; employment status of
individuals (employed, unemployed, not in labor force) in a study of people.

Variance. The square of the standard deviation. See Standard Deviation.
z-Statistic. See t-Statistic.
Z-Test. See t-Test.
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